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Abstract
Geometry is inherent and well rooted in various disciplines of science. Integrable nonlin-
ear system is one among them. They are exactly solvable with soliton solutions, and are
naturally associated with differential curves and surfaces. One of the remarkable feature of
integrable system is the recurrence property, wherein the system returns to its initial state
through a rather complicated nonlinear evolution. This was observed for the first time as
a paradox in the celebrated Fermi-Pasta-Ulam-Tsingou (FPUT) experiment. The paradox
eventually led to the discovery of solitons and laid the foundation for the entire subject of
integrability. The recurrence phenomena can be modelled by spatially periodic breather so-
lution to the nonlinear Schrödinger equation (NLSE), more precisely, Akhmediev breather,
wherein the system recovers the initial state in its time evolution. Being the governing
model for a variety of physical systems, NLSE is well studied with a substantial amount of
literature.

In this thesis we examine geometrical aspects of the NLSE in the context of breather
solutions. The following nonlinear systems are studied owing to their close relationship
with NLSE:

◦ Classical 1-d Heisenberg Ferromagnet (HF),
◦ Vortex filament in fluid under localized induction approximation (LIA).

In classical HF model we examine the breather excitation in detail. An explicit ex-
pression for the spin breather is presented. Spatially periodic case — a counter part of
‘Akhmediev breather’, is studied in particular. This special magnon mode leads to a re-

currence phenomena in the HF model. In the background spin field the spin vectors take
‘two’ complete turns along the chain between its ends. During the breather excitation the
spin chain continuously transforms to a configuration wherein the net turn becomes ‘zero’.
This peculiar geometrical feature is interpreted as a manifestation of the ‘belt trick’, which
demonstrates the triviality of 4π rotation. Magnon mode is visualized in SU(2) group man-
ifold along with a description of topological sectors and their energy lower bounds. In this
breather mode the background spin configuration is a static field. Moreover, the initial and
final configuration are exactly identical in the context of recurrence process.

Further, we present an explicit expression for a similar spin breather for which the back-
ground spin configuration is a dynamical field. This magnon mode is qualitatively different
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in the sense that the recurrence process introduces an additional global rotation in the spin
chain. That means the recurrence is not exact as in the previous case. This measurable
change is treated as the ‘trace’ being left in the system during a breather excitation.

Mathematical framework of soliton theory associates each soliton solution with a sur-
face in Euclidean 3-space. Geodesic on this surface is a space curve in R3 thereby providing
a geometrical picture of the soliton solution. From a physics point of view, such a moving
space curve approximately describes the dynamics of a vortex filament in fluid under LIA
scheme. We obtain explicitly the breather excitation over a helical curve. Corresponding
complex field of NLSE is also examined. We show that this is in fact a new breather so-
lution to the NLSE. Specifically, the associated space curve is shown to have periodic knot

formation in its time evolution. Previously known knotted solutions are of invariant shape
which are associated with periodic solutions to the NLSE — more precisely, Kida class of
solutions. We emphasize that a knot structure associated with a breather solution has so
far not been witnessed. Spatially periodic case of this breather solution turn out to be a
Galilean transformed version of the ‘Akhmediev breather’. Their background space curves
are a helix and a circle respectively. A circle and a helix are associated with plane wave so-
lutions that are related through a Galilean transformation. We show that spatially periodic
breathers of the Akhmediev type can also be obtained from a wave solution associated with
a circle, through a Galilean transformation followed by a Darboux transformation. The
general question of permutability of the two transforms, however remains open.
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5.3 Indicatrix — curve traced by Ŝ1 on the surface of a unit sphere . . . . . . . 87
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Chapter 1

Introduction

In physics we often encounter theoretical models that are comparatively simple, yet mathe-
matically rich. It could be an equation or a set of equations that describe certain dynamics.
They may not always represent an exact physical system to its minute details, but they carry
the essential signature that define those systems. This often helps to gain significant insight
into the system dynamics. One of the classic example is Lorenz attractor — a system of
three differential equations, which possess the basic features of a chaotic system [1]. One
can even think of a simpler model in one dimension, the ‘logistic map’ that shows chaotic
behaviour [2]. The best part about these models is that they allow us to actually “see”
the magic involved in the nonlinear evolution. For instance, one may witness the fractal
geometry of a chaotic attractor; the self-similar structure at every scale [3, 4]. It is not an
illustration of some previously known abstract idea, but the very intriguing nature of the
system that cannot be revealed otherwise. Visualization of the dynamics have often played
a decisive role in exploring the subject in detail.

The motion of a chaotic system will never repeat; there is no order. On the other
hand, there are nonlinear systems that are completely ordered. In other words, infinitely
many conservation laws present in the system restraining the system dynamics. These are
integrable systems [5]. One can write analytical solutions for an integrable system, whereas
one has to rely on numerical integration for a chaotic one. The integrability and chaos are
two opposite regimes of nonlinear dynamics. One landmark in the history of integrable
systems is FPUT experiment (FPU in earlier literature). Sixty-five years ago Fermi, Pasta,
Ulam and Tsingou constructed a theoretical model by coupling a finite number of one
dimensional anharmonic oscillators [6]. The first normal mode was excited initially with
a finite amount of energy. Since the dynamical expression was nonlinear, they anticipated
the sharing of energy with all the higher modes in equal manner. Sharing does occur as
anticipated. However, after a sufficiently long time the initial mode is recovered with nearly
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the same energy as in the beginning — a near recurrence. That was quite unexpected and
paradoxical for a start [7].

Later studies showed that the mathematical model considered in FPUT experiment is
in a way an integrable system. The motion of an integrable system can repeat. A more apt
terminology is recurrence, in line with the landmark experiment. The energy sharing from
first normal mode to higher modes, and the recovery of the first mode as in the beginning,
is a common feature in nonlinear systems widely known as modulation instability (MI) [8].
Therefore the recurrence is not limited to the FPUT model alone. Technical details aside,
one can consider the recurrence as the recovery of a smooth (single wave) initial condition
through a rather complicated nonlinear evolution. This scenario can be exactly modeled
by the breather solution of nonlinear Schrödinger equation (NLSE), more precisely a spa-
tially periodic breather [9]. Initial and final stages are steady and smooth. The dynamics is
actually taking place in between, much like shuffling playing cards in a peculiar way, that
the cards end up in the same initial configuration. It is worth mentioning that the Fourier
components of the breather mentioned here, analytically describe the growth–decay cycle
of higher normal modes seen in the FPUT recurrence, where the recurrence occurs only
once [10]. Breather is a special solution which has a pulsating nature along with localiza-
tion properties [11]. They are soliton solutions with periodicity.

Every integrable system including NLSE, has a geometrical connection well rooted in
the mathematical framework of soliton theory [12]. The connection can be explained less
technically by invoking the relationship between a fluid vortex dynamics and the NLSE.
One can think of a vortex filament around which fluid circulates. This vortex moves under
its own induction. A simplified model can be considered omitting long range effects of
the vorticity in ideal fluids. Such a model is now popularly known as localized induction
approximation (LIA). In this scheme the curvature and torsion of the filament varies in such
a way that they satisfy a coupled nonlinear equation. This finding was initially made by
Da Rios in 1906, but remained obscure for more than fifty years [13]. However people
have derived it in many different ways without being aware of the previous work. Later,
it came to be known that the curvature and torsion, when put together to form a complex
function in a certain manner, satisfies the NLSE. In other words, a soliton solution of the
NLSE describes a moving space curve thereby providing a geometrical visualization of the
complex solution [14]. Regarding the breather solution, such a space curve reflects the
localization and periodicity geometrically [15].

There exist another mathematical model closely related to the NLSE, known as classical
Heisenberg Ferromagnetic spin chain [16]. This is one dimensional system of classical
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spins, 3-vectors, interacting with nearest neighbours. Spin-spin exchange interaction is
arising as a consequence of the Pauli exclusion principle [17, 18]. Each vector can take
arbitrary direction in three dimension. But the motion is constrained in such a way that
nearby vectors try their best to align in the same direction. Excitations of a spin system
are called magnons [18]. It can be treated as a wave in the spin chain. This classical HF
spin chain is gauge equivalent to the NLSE [19]. In other words they are quite same in their
underlying mathematics. Therefore the NLSE breather solutions must have a counterpart in
classical HF model. What is special about spin chain is that they live in three dimensional
space. Unlike complex solutions of NLSE one can actually “see” the dynamics.

It would be interesting to see the recurrence process in this HF spin chain. As pointed
out earlier, the recurrence is like shuffling playing cards keeping the initial and final con-
figuration identical. This could be visualized in spin chain during a breather excitation —
a special magnon mode. The spin chain surely goes back to its initial orientation through
a complicated nonlinear evolution. What happens in between? Are the initial and final
configuration exactly identical? These questions are so far not explored in literature. This
thesis tries to shed some light on this issue: the recurrence process in continuum spin chain,
and their geometrical interpretations.

During our studies we observed certain interesting topological features in the associ-
ated space curve. Specifically, a periodic knot formation, so far not witnessed in breather
excitations. We will detail these aspects also along with the magnon modes.

1.1 Rogue waves

There are certain special kind of waves that appear all of a sudden out of a calm and quite
background; and disappear without leaving any remnants [20]. The concept is self evident
from Fig. 1.1, which is an illustration of such a wave, widely known as Rogue wave or freak
wave. Rogue waves can occur in deep ocean causing severe damage for ocean liners and oil
platforms. This has been a mythical story for centuries till the scientific record of Draupner

wave by digital measurements, during the New Year’s day of 1995 at the Draupner platform
in the North Sea [21, 22]. Rogue waves are not limited to ocean waves. Existance of rogue
waves in optical fiber [23], plasma systems [24] and Bose - Einstein condensate under
suitable conditions [25], are some of the areas of intense research in recent years. These
waves are highly localized in space as well as in time, often modelled by exact solutions of
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nonlinear Schrödinger equation (NLSE),

iψt + ψxx + 2|ψ|2ψ = 0, (1.1)

which approximately describes wave dynamics in deep water [26]. NLSE is a useful model
in many disciplines like optics, Bose - Einstein condensate, plasma physics, superfluid
vortices, and ferromagnetic spin system to name a few [27, 28, 29, 16]. Being an integrable
system, NLSE is exactly solvable with soliton solutions via Inverse Scattering Transform
(IST) [30]. The detailed story of integrable system and the discovery of soliton goes a long
way back in history, right from the celebrated Fermi-Pasta-Ulam-Tsingou experiment [6,
31] carried out in 1955.

(a) (b) (c) (d) (e)

Figure 1.1: Rogue wave prototype — no hint, no trace.

In the NLSE framework, rogue wave can be seen as a special case of a more general
solution called breather solution, where the energy localization has an oscillatory nature;
either in space or in time. Spatially periodic breather is widely known as Akhmediev
Breather (AB), time periodic one as Kuznetsov-Ma Breather (KMB), and the limiting case
where the period of oscillation tends to infinity is termed as Peregrine Soliton (PS) [11].

1.2 Classical 1-d Heisenberg ferromagnet

One dimensional Heisenberg ferromagnet (HF) in the continuum limit is known to be
equivalent to the NLSE [16, 19]. For simplicity, one may call it as classical HF model
or simply HF model. In this model spins can be considered as unit vectors each having 3
rotational degrees of freedom, placed over a one-dimensional lattice. Spins at adjacent sites

c

Figure 1.2: Soliton in the HF spin chain. Energy density, E ∝ sech2(x− ct).

4



interact via the exchange interaction arising out of the Pauli exclusion principle [17, 18].
This is an ideal model where there is no external magnetic field or damping force [32]. In-
terestingly, it is an integrable system endowed with soliton solutions [33]. The relationship
between HF model and NLSE was initially identified by Lakhshmanan [34, 16] through
geometrical arguments. More conclusively, Zakharov and Takhtajan showed that both the
systems are gauge equivalent [19]. Therefore, associated with each solution to the NLSE,
there exist a spin configuration. Thus all the features of NLSE can be expected in this spin
system in an entirely different language.

To make this clear, consider the well known soliton solution to the NLSE — a localized
travelling wave of ‘secant-hyperbolic’ type, ψsh. The corresponding solution in the HF spin
chain is a localized disturbance moving with a constant speed [34, 35]. This is shown in
Fig. 1.2, which can be seen as a soliton excitation over a static spin field.

1.3 Moving space curves

A vortex filament in an ideal fluid moves under its own induced velocity. Da Rios in 1906,
formulated a dynamical expression for this motion by omitting the long range effects of the
vorticity. Such a scheme is now known as localized induction approximation (LIA) [13].
Da Rios equation is an intrinsic equation describing a moving space curve, through a cou-
pled partial differential equation of its curvature and torsion, given by

κt = −2κxτ − κτx, (1.2a)

τt =
(κxx
κ
− τ 2

)
x

+ κκx. (1.2b)

It has a rich history in literature as it was derived agian three times independently [36],
without the authors being aware of the work done previously by Da Rios. One of its re-
discovery was done by Lakshmanan et al. [34], wherein they wrote the dynamics of classi-
cal HF model in a coordinate independent way — as an intrisic equation similar to the Da
Rios equation (but for a negative sign). The parallelism between Da Rios equation and the
NLSE can be understood using the Hasimoto [37] function,

ψ =
1

2
κ eiσ, σx = τ, (1.3)

where κ and τ are respectively, the curvature and torsion of a curve. The complex function
ψ is described by the NLSE (1.1), provided that κ and τ obeys the Da Rios equation (1.2).
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(a) ψl = 0 (b) ψc = κ0e
i2κ2

0t (c) ψh = κ0e
i
√
2κ0x

(d) ψsh = ei( ) sech( ) (e) Akhmediev breather (f) Kuznetsov-Ma breather

Figure 1.3: Space curves associated with ψ. Curves (a), (b), (c) and (d) are of invariant
shape under time evolution. Straight line (a) doesn’t move. Soliton excitation over the
straight line leads to the traveling ‘loop soliton’ (Hasimoto loop) shown in (d). Breather
excitation over the circle (b) leads to (e) and (f). Detailed plots for breathers (e) and (f) are
given in Sec. 3.2.2.

In brief, there exist a moving space curve in R3 that can be systematically associated
with each solution to the NLSE. Such a curve approximately describes motion of a vortex
filament in an ideal fluid. Fig. 1.3 will elucidate the concept. Bathtub vortex [38] and
smoke rings [39] are familiar examples of fluid vortices, which are respectively modeled
by NLSE space curves shown in (a) and (b). Helical vortices (c) can be constructed experi-
mentally [40]. Loop solitons (d) have been observed in the laboratory [41], and also in real
situations like tornadoes [42]. A detailed description of the space curves will be provided
in section 3.2.

Geometric nature of soliton solution is well rooted in the mathematical framework of
integrable systems. In other words, the space curves are not limited to NLSE alone. A
more rigorous formalism for the space curve, incorporating modified KdV and sine-Gordon
equation was done by Lamb [43]. The concept of soliton surfaces was exemplified in a
series of papers by Sym and co-workers [12, 44, 45, 46, 15], which is applicable to a broad
class of integrable systems. In the particular case of NLSE, the curve described by the Da
Rios equation is a geodesic on the soliton surface [44].
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1.4 Solitons: A historical background

One of the major turning point in the study of nonlinear dynamics was the Fermi-Pasta-
Ulam-Tsingou experiment, which is now considered to be the beginning of experimental

mathematics [47]. Although the theoretical model under study was quite simple, its results
were controversial in nature which continue to inspire many researchers all over the globe
even after 65 years [48, 49, 50]. The FPUT problem has a decisive role in the understand-
ing of integrable systems and soliton dynamics. For that reason, we will give an elaborate
introduction to this experiment followed by a description of how does it lead to the dis-
covery of solitons. However, minute mathematical details of this study is not necessary to
understand the thesis work.

1.4.1 Fermi-Pasta-Ulam-Tsingou problem

The first ever numerical experiment Fermi-Pasta-Ulam-Tsingou problem was performed
using one of the earliest computers, MANIAC I, at Los Alamos National Laboratory in
1955. Due to the demise of Fermi before the results were approved by him, it was not
published that time but appeared as a classified report [6]. They studied the dynamics of
a one dimensional chain of point masses linked together by linear force which is weakly
perturbed by nonlinear terms. Let yn be the displacement of the n-th mass from its equilib-
rium position. Two different systems were considered wherein the equation of motion for
n-th mass can be written as,

ÿn = (yn+1 − 2yn + yn−1) + α [(yn+1 − yn)2 − (yn − yn−1)2], (1.4a)

ÿn = (yn+1 − 2yn + yn−1) + β [(yn+1 − yn)3 − (yn − yn−1)3]. (1.4b)

For simplicity, they considered unit masses and the coefficient of linear term has been set
to ‘1’ without loss of generality. The first chain with quadratic non linearity is called α-
model and the second chain with cubic non linearity is called β-model, where α and β
are strengths of the nonlinear interaction between neighbours. Here end points are fixed,
y0 = yN = 0. As a common approach they studied the system in terms of ‘normal modes’
qk(t), which are essentially the Fourier representation of yn(t), as given by

qk(t) =

√
2

N

N∑
n=1

yn(t) sin
πkn

N
. (1.5)
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Before going to the motivation behind this problem, it is necessary to make a distinction
between integrable and non-integrable systems. For that purpose we will briefly discuss the
unperturbed case, by setting α = 0. Then the Hamiltonian for the α-model [7], turns out
to be the Hamiltonian for a system of independent harmonic oscillators with frequency
ωk = 2 sin( πk

2N
) for the k-th normal mode. Let it be,

H(pk, qk) =
1

2

N∑
k=1

(p2
k + ω2

kq
2
k). (1.6)

Here, ṗk = −ω2
kqk and q̇k = pk. For a given initial condition qk(0) and pk(0), it is possible

to solve qk(t) and pk(t) at this stage. This special form of the Hamiltonian indicates a
possible canonical transformation in which H is cyclic in the new coordinates [51, p. 378].
A new set of coordinates (Qk, Pk) can be considered [5, p. 247] in the below form,

qk = (2Pk/ωk)
1/2 sinQk, pk = (2Pk ωk)

1/2 cosQk, (1.7)

so that the above Hamiltonian (1.6) get transformed to,

H0(Pk, Qk) =
N∑
k=1

Pk ωk. (1.8)

Since H0 is cyclic in Qk, the conjugate momentum Pk is a constant. The solution for
the system is, Pk(t) = Pk(0) and Qk(t) = ωkt + Qk(0), where ωk = ∂H/∂Pk. For a
given mode k, frequency ωk is already a constant, so that Pk ωk defines a new constant Ek,
such that H0 =

∑
Ek. This Ek can be treated as the energy in the k-th mode, and the

sum of which, is the total energy of the system. So, a harmonic system with N degree
of freedom is solvable with solutions in the closed form and there exist N constants of
motion. Since Ek’s are separately constants, energy cannot be shared from one normal
mode to another, and the energy equipartition is not possible in this harmonic limit [52].
We rarely get systems which are exactly solvable with explicit solutions. Here comes the
notion of ‘integrability’. “An integrable Hamiltonian system is defined as one having as

many single-valued, analytic constants of motion Φk as degrees of freedom, such that all

pairwise Poisson brackets {Φk,Φl} = 0” (Ford, 1992, p. 276) [7].

A more precise statement is given by Moser [53, p. 41] which is as follows: A Hamilto-
nianH(pk, qk) is said to be integrable if there exist a canonical transformation from (pk, qk)

into (Pk, Qk) such that the Hamiltonian depends only on Pk. i.e., H = H0(Pk). Then the
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temporal evolution of the system is given by,

Pk(t) = Pk(0), Qk(t) = Qk(0) +
∂H0

∂Pk
t, (1.9)

where k = 1, 2, . . . , N . The above canonical coordinates (Pk, Qk) are referred to as ‘nor-
mal coordinates’, or sometimes action angle variables. ∂Pk

∂t
= {H0, Pk} = 0, implies that

all these Pk’s are integrals of motion.

Since Pk’s are constants of motion, the trajectory of an integrable system is spatially
bounded. For N = 1, in a suitable phase space, the trajectory can be a circle. For N = 2

it can be on the surface of a torus. In general for a system having N degrees of freedom,
system motion occurs onN -dimensional tori [5, 7]. SinceQk’s are cyclic variables, system
dynamics can also be represented in Qk plane, where Qk at 0 and 2π are identified. (See
section 8.3 in Ref. [5] and figures therein for a detailed discussion).

A natural question is this: what happens to the ‘integrability’ of the system under a
small perturbation ?

Consider the perturbation of the form,

H = H0(Pk) + εH1(Pk, Qk), (1.10)

where H0(Pk) is integrable and ε is the strength of the perturbation. Clearly, ε = 0, make
the system integrable with N integrals of motion. Poincaré attempted to find how many of
them survive when ε 6= 0. He proved [54, p. 380] in 1889, that there exist no integrals of
motion of the form Φ(Pk, Qk, ε) other than H .

Fermi was very much sure about this result, but was not aware of KAM theorem [55,
p. 105] proposed around that period which proved a kind of near integrability for suffi-
ciently small perturbation [56]. This was the reason behind setting the FPUT problem in
that way — as a small perturbation to the linear problem [5, p. 259]. Since Ek’s (Energy in
the k-th mode) are the constants of motion in the linear problem, under perturbation they
were led to believe that there exist no constants other than the total energy H . In short, in
the presence of perturbation, Ek = q̇2

k + ω2
kq

2
k, would not remain constant under the time

evolution, and the only possibility for this to happen is the sharing of energy between var-
ious modes. Sharing of energy should be in such a way that after a long time every mode
will acquire same energy 〈Ek〉, which is independent of k, due to the ‘equipartition the-
orem’ in equilibrium statistical mechanics [52]. In fact, the motivation behind the FPUT
experiment was not to confirm this energy equipartition, but to find the time it takes to
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attain this equilibrium state [57, p. 977].

Fermi et al. studied the FPUT model (1.4) with an initial condition yn(0) = sin nπ
N

,
ẏn(0) = 0, which is the same as exciting the chain in its 1st normal mode alone. They
solved the equations of motion numerically for yn(t) (also for ẏn(t)) and expressed them
in terms of normal modes qk using (1.5). Energy in the k-th normal mode Ek = q̇2

k + ω2
kq

2
k,

is computed in the due course, expecting that the initial energy given in 1st normal mode
(E1) will decrease gradually and the other higher modes will start to grow, thereby leading
to energy equipartition after a suitable period of time. Contrary to their belief, the system
didn’t show any hint towards energy equipartition. Exchange of energy was observed only
among first few normal modes. At the same time, this sharing was taking place in a regular
fashion. This regularity is more profound with certain choice of parameters, so that the ini-
tial condition has been recovered (with a few percent closing error) and the system seems
almost periodic. This (near) recurrence of initial state is observed in both α and β model
as shown in Figs. 1 and 4 of their report [6]. See Fig. 8 in their report [6] to see the dis-
placement yn(t), instead of ‘normal modes’. It is worth quoting Zabusky at this point, who
along with Kruskal treated the problem in this way to get an explanation for the recurrence
— “In fact, we have found that for this and similar problems, the description according

to interacting interacting normal modes has usually been unrewarding as far as making

decisive progress”(Zabusky, 1967, p. 230) [58].

Although the ‘recurrence’ bring back the initial mode, a few percent of energy always
get shared among other modes during a single FPUT period. This ‘closing error’ continues
to increase in the next seven FPUT periods, beyond which the effect gets reversed. After
fourteen such (near) recurrences, the ‘return’ to the initial condition was much closer than
that of the first (near) recurrence. The existence of ‘super-recurrence’ (or super period) was
studied by Tuck and Menzel [59], without which one could have argued that the system may
show a tendency towards equipartition after a sufficiently long time. It is now recognized
that the original problem of Fermi et al. was coded by Mary Tsingou Menzel who was
credited for her work [6] but not listed as a co-author [31]. This is the reason why this
crucial study was referred to as ‘FPU problem’ in previous literature.

Finally, FPUT results can be summarized as follows — certain small amount of non lin-
earity imposed in their model didn’t bring equipartition of energy. Higher ‘normal modes’
were practically absent as if the system have only a limited number of degrees of free-
dom. As a special case, this system even shows periodic behaviour, which is now known
as recurrence property.

Some people considered the recurrence as a paradox, and later in 1965 Kruskal and
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Zabusky explained this recurrence which shall be discussed in the next section. But other
problems remained open at that time, namely the true reason behind the lack of equipar-
tition under perturbation, and the strength of the perturbation (threshold) with which the
system finally attain equipartition. These two apparent paradoxes have led to further stud-
ies. See for instance, Refs. [52, 60]. The FPUT experiment also stimulated the area of
‘deterministic chaos’ along with studies of ‘integrable systems’ which are now considered
as the two pillars of nonlinear science [61, 62, 63].

1.4.2 Discovery of solitons

Kruskal and Zabusky attempted to study the recurrence problem using a continuum ap-
proximation of the discrete lattice. In fact, Fermi et al. had this in mind while formulating
the problem. In their own words — “for the purposes of numerical work this continuum

is replaced by a finite number of points (at most 64 in our actual computation) so that the

partial differential equation defining the motion of this string is replaced by a finite number

of total differential equations” (Fermi et al., 1955, pp. 3–4) [6]. Which means, one has to
go in the reverse direction to find out what partial differential equation (PDE) the discrete
lattice corresponds to. Deducing that PDE and solving it under the given initial condition
helps to achieve a clear picture of the system dynamics.

Displacement of the n-th particle yn(t), as mentioned in (1.4) can be replaced with
y(x, t) so that instead of counting n from 1 to N , one can vary x from 0 to L, the length of
the chain. Replace yn±1(t) with corresponding Taylor expansion by keeping h as the lattice
constant.

yn(t) ≡ y(x, t); yn±1(t) ≡ y(x, t)± hyx +
h2

2!
yxx ±

h3

3!
yxxx +

h4

4!
yxxxx ± · · · (1.11)

On substituting this in (1.4), equation of motion for α model [58, p. 229] becomes

c−2ytt = (1 + εyx)yxx + (h2/12)yxxxx + (εh2/6)yxxxyxx +O(h4) +O(εh4), (1.12)

where ε = 2αh and c2 = h2k/m. Spring constant k and the mass of the particle m are set
to ‘1’ in (1.4) for simplicity. Here, c2 = hk

(m/h)
= (elastic modulus / mass density), which is

square of the sound speed in the lattice. At this point it is worth noting that for the harmonic
limit α = 0 (hence ε = 0),

ytt = c2yxx + c2(h2/12) yxxxx. (1.13)
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Lattice constant h arises as a measure of discreteness of the system . Omiting yxxxx on
the basis of negligibly small h2, results in a non dispersive system. In other word, the
discreteness (terms containing h2 or higher powers) is required for the wave to spread out
in the medium [58, 5]. Zabusky considered the lowest continuum limit of (1.12) in h, which
is

ytt = c2(1 + εyx)yxx, (1.14)

and found an exact solution for it. But in this solution, yx becomes multi-valued after a cer-
tain breakdown time, beyond which the evolution has no physical sense [64]. Kruskal and
Zabusky later studied this in detail, taking the Fourier decomposition of y(x, t) and found
that the solution indeed describes the FPUT lattice dynamics suitably until the occurrence
of breakdown [65]. Zabusky was already aware that the omission of higher derivatives has
a role in this breakdown, which he had mentioned in the conclusion section of Ref. [64].
Finally, Zabusky and Kruskal decided to include the “discreteness or graininess of the
medium” (term containing h2) and focused on

c−2ytt = (1 + εyx)yxx + (h2/12)yxxxx. (1.15)

Introducing Riemann invariants and change of frame of reference [5, 58], they could derive
a nonlinear partial differential equation of the form,

ut + uux + δ2uxxx = 0, (1.16)

where δ being the scaling factor. One can also arrive at (1.16) from (1.15) using an asymp-
totic transformation as shown by Toda [66, Sec. 5]. This PDE is the Korteweg-de Vries
equation (KdV), well known since 1895, which was initially proposed to model the dynam-
ics of a shallow water wave [67]. KdV equation also appears in the field of collision-free
magneto hydrodynamics [68].

The term uux in (1.16) is the nonlinear term which is responsible for the breakdown
of the wave profile. One can check this by considering the PDE, ut + uux = 0, and its
solution of the form u(x, t) = F (x − ut), where F (ξ) being some arbitrary function, say
cos(πξ). This is an implicit solution analogous to a traveling wave of the type F (x − vt),
where the velocity depends on the height u of the wave profile. Thus the regions of large
u travel faster than other regions, and this overtaking effect eventually produces a flat front
where ux practically blows up [69, 5]. This kind of steepening of the wave is the outcome
of non linearity. On the other hand, the term uxxx is accountable for the dispersion in the
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medium. The solution of ut + uxxx = 0, can be expressed in terms of Airy functions [69,
p. 9], where an initial wave form splits into ripples (wave spreading) in its evolution [5,
p. 364]. Therefore, the right amount of non linearity and dispersion is necessary for the
wave to sustain in the long run.

Zabusky and Kruskal numerically solved the KdV equation in 1965, and resolved the
puzzle of “recurrence” [70]. They studied the evolution of a long wave, u(x, 0) = cos(πx),
similar to the initial condition of FPUT problem, setting δ = 0.022 in (1.16). They imposed
a periodic boundary condition so that the waves go out through one of the boundaries, and
re-appear from the other, instead of reflection in the fixed boundary problem. They ob-
served that in the initial phase, the system behaves like ut + uux = 0, where non linearity
plays the major role, thereby steepening the wave profile towards the breakdown. But this
(anticipated) breakdown (ux → ∞) will not occur as the term uxxx starts to grow which
produces ripples of small amplitude behind the already steepened wave profile (first peak).
Amplitude of these ripples start to grow gradually, making them individual peaks having
almost same shape and varying heights (8 solitary pulses in their study) [70, Fig. 1]. These
solitary pulses travel with speeds proportional to their respective heights, eventually getting
separated from each other. They either collide with those coming from the other side, or
they overtake the shorter ones — both can be considered as solitary wave interaction. What
is unusual here is that they interact by exchanging their respective positions, after which
they reappear unaffected in size and shape [70]. This indicates that they are stable enough
to sustain in the medium without losing their identity even after much longer period. These
localized entities (solitary waves) interact among themselves in a way that resembles parti-
cle interaction. Therefore, the authors coined the word “soliton”, for the first time. Motion
of the pulses were quite random for a while. But in the later stage all the pulses came back
to their respective positions, so that the original wave form is recovered almost completely
— some what like a “mirror image” (in both space and time) of the splitting-up happened
in the initial cosine wave [71]. Thus, the FPUT recurrence has been simulated successfully
as a partial explanation to the paradox, which triggered further studies of ‘soliton systems’
or nonlinear integrable systems. A systematic method was developed for solving such sys-
tems analytically in closed form ( KdV equation in particular), by Gardner et al. [72] in
1967 which is widely known as inverse scattering transform (IST).
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1.5 NLSE breather: An exact solution for the recurrence

Form the beginning itself people were approaching the FPUT problem in two different
ways, i.e., in terms of

1. Energy sharing between initial normal mode and other higher modes,

2. Recovery of initial wave profile after its breakdown into several wave packets.

Zabusky and Kruskal believed that the view point in terms of normal modes were not useful
for the problem at hand. As far as the second view point is concerned, they have closed the
problem in the context of elastic collision between solitons. Wave breaking process into
envelope solitons is common phenomena seen in nonlinear and dispersive media. This can
take place due to the periodic perturbations over a continuous background, which is well
known in nonlinear science as modulation instability (MI) [73]. It is a basic phenomena
in nonlinear systems which is extensively studied in the areas of optics, hydrodynamics,
plasma physics and many more [8].

Interpretation of MI in terms of spectral components (Fourier modes) has close resem-
blance to the FPUT recurrence. In MI dynamics, energy sharing from central mode to the
sidebands grows initially, then gradually comes to an end, reverses thereafter, and even-
tually reinforces the central mode once again as in the beginning. This is essentially a
recurrence process. An exact analytic solution for this energy sharing was obtained much
later by Akhmediev and Korneev, by considering the Fourier modes of spatially periodic
breather solution to the NLSE [9]. This has been experimentally demonstrated using laser
pulses in optical fibers [74]. A convenient mathematical expression for spectral evolution
of Akhmediev breather (AB), and its comparison with numerical and experimental studies
are shown in Refs [75, 76].

Thus, the recurrence observed in the FPUT experiment — the energy sharing between
carrier wave and other spectral components, became more relevant later in the context
of modulation instability (MI). This is in fact described by the Fourier expansion of the
Akhmediev breather. This is the way FPUT recurrence is being perceived today [10].

1.6 Objectives of the thesis

Breather solution to the NLSE is an excitation over the plane wave ψc = κ0e
i2κ20t. In the

context of Akhmediev breather, the plane wave will be recovered exactly as before (upto
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a phase shift). This recurrence phenomena must have a counterpart in the classical HF
model, owing to their gauge equivalence. The actual spin dynamics may provide a novel
description for this recurrence. Motivated by this problem, our objective here is to obtain an
explicit spin configuration associated with NLSE breather solution. Of particular interest
to the recurrence problem, we will focus on the spatially periodic spin breather — a special
magnon mode (Akhmediev type). Further studies will involve the topological features of
this magnon mode by exploring the spinor representation, indicatrix, linking number etc.
Energy lower bound for the magnon mode will be investigated.

A soliton solution can be systematically mapped to a geometric curve as shown in
Fig. 1.3. Line, circle and helix are elementary in the study of geometrical curves as they
are the simplest curves anyone can think of. Helix is more general among them because for
a helix both the curvature and torsion are non-zero. Soliton (breather) excitation over a he-
lical background may possess general features so far not witnessed in other existing space
curves. To fill this gap, we will obtain a breather (excitation) solution over the plane wave
ψh = κ0e

i
√

2κ0x. Space curves associated with this breather solutions will be constructed
explicitly. Galilean transformation of ψc, ψh and their respective breathers will be investi-
gated. Spin configurations corresponding to this new breather will be studied with a focus
on the spatially periodic case. Dynamics of this special magnon mode will be examined in
the context of recurrence process.

1.7 Outline of the thesis

The thesis is thus organized as follows:

• In Chapter 2 we present the mathematical background. This will involve a basic
explanation of Lax pair and compatibility condition, a brief derivation of classical
HF model right from Heisenberg Hamiltonian, derivation of Da Rios equation from
the classical 1-d HF model, the Hasimoto map, gauge equivalence relationship, and
the concept of soliton surfaces. Darboux transformation — the technique used in this
thesis to construct soliton (breather) solution is briefly outlined.

• Chapter 3 focuses on the space curve dynamics of the breather solutions. A detailed
survey of various space curves associated with NLSE is provided. Further, we present
explicit mathematical expression for a new breather solution, and its associated space
curve. The associated space curve is shown to form a knot periodically. The time
periods for knot and unknot are obtained numerically. We have shown that spatially
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periodic case of this new breather is a Galilean transformation of the AB. In the
context of LIA, the result is discussed in line with the recent laboratory studies of
helical vortex excitations.

• Chapter 4 is devoted to the breather excitation in classical HF model. An explicit
mathematical expression for the spin breather is presented. Spatially periodic case
(Akhmediev type) is considered wherein a particular rogue mode is studied in de-
tail. Breather (rogue) excitation in the spin chain is found to demonstrate the well
known belt trick. This peculiar topological feature is studied by exploring the spinor
representation, i.e., a description of the spin dynamics in SU(2) group manifold.
An energy lower bound is presented, thereby showing that the entire class of spin
breather fall into two topological sectors.

• Chapter 5 revolves around the FPUT recurrence in the HF model. Spin breathers
associated with the knotted solution given in chapter 3 are obtained explicitly. We
will focus on the spatially periodic case — a special magnon mode, to examine the
recurrence process. It is shown that, during the recurrence process the spin chain has
undergone an additional global rotation. This scenario is absent in the magnon mode
given in Chapter 4. A comparison with these two is given.

• Chapter 6 concludes the thesis by considering the key findings in a wider perspec-
tive. Some interesting research directions based on our results will be mentioned.

• Appendix A provides necessary mathematical derivation and and simplified steps
related to Chapter 3.

• Appendix B provides necessary mathematical derivations and simplified steps. A
brief description of AB, KMB, PS and their associated space curves are given.
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Chapter 2

Theoretical background

2.1 Introduction

This chapter is entirely devoted to the mathematical background of the nonlinear systems
to be studied in the thesis. Our study mainly involves three integrable systems namely –

(1) nonlinear Schrödinger equation (NLSE),
(2) Da Rios equation or LIA,
(3) the classical HF model in one dimension.

This chapter will provide a comprehensive idea regarding the close relationship among
these three. We use Darboux transformation (DT) technique to obtain new soliton (breather)
solutions starting from trivial ones. This method is briefly outlined at the end of this chap-
ter.

2.2 Lax pair and Compatibility condition

The idea of representing a nonlinear equation using two linear operators was due to Peter
Lax [77], which now bears his name. This was proposed initially for KdV, and later for
NLSE [30], indicating the applicability of IST in various nonlinear systems [5, 69]. A
generalized method referred to as AKNS formulation (Ablowitz, Kaup, Newell, Segur) [78]
is more convenient since the operators are in the form of matrices. We will introduce
the concept of Lax pair only in the matrix form, and it is essential for the mathematical
background to be discussed in the subsequent sections. Consider the system of linear matrix
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equations,

Fx = U(x, t, λ)F, (2.1a)

Ft = V (x, t, λ)F, (2.1b)

where U and V are two matrix valued functions describing space and time evolution of
F , and λ is an arbitrary spectral parameter in the language of IST. Equating mixed partial
derivatives Fxt and Ftx computed from (2.1), the compatibility condition Fxt = Ftx leads
to the zero curvature condition

Ut − Vx + [U, V ] = 0. (2.2)

Let
ψt = K(ψ, ψx, ψxx, ...), (2.3)

be the integrable system in question, which is a nonlinear partial differential equation. If
(2.3) can be shown as equivalent to (2.2), then the linear system (2.1) is said to be the Lax
pair associated with the integrable system (2.3). In other words, one has to identify suitable
U and V to constitute a Lax pair, such that the zero-curvature condition (2.2) give rise to
the integrable system.

For a clarity on the nomenclature to be used, let us call U and V as connection coeffi-
cients (or simply connections) [79, p. 21], and the linear system (2.1) formed by them as
Lax pair [80, p. 285]. We call F as the fundamental solution of the Lax pair [81, p. 5].

As an example, let U and V be ( ideally functions of x, t and λ but for the purpose, they
can be a function of ψ and its derivatives) in the below form,

U(ψ) =

(
0 ψ

−ψ 0

)
+ λ

(
−i 0

0 i

)
, (2.4a)

V (ψ) =

(
i|ψ|2 i ψx

i ψx −i|ψ|2

)
+ λ

(
0 2ψ

−2ψ 0

)
+ λ2

(
−2i 0

0 2i

)
. (2.4b)

Left hand side of the zero-curvature condition (2.2) then turn out to be a polynomial in λ,
where the coefficient of λ3, λ2 and λ will vanish identically. The only term independent of
λ survives, and results in the below matrix equation.(

0 i ψt + ψxx + 2|ψ|2ψ
−i ψt + ψxx + 2|ψ|2ψ 0

)
= 0 (2.5)
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Thus, the nonlinear Schrödinger equation (1.1) (and its complex conjugate), arises as
the compatibility condition for a specific choice of U and V as given in (2.4). Therefore,
the corresponding linear system (2.1) is said to form the Lax pair for the NLSE. For each
solution ψ(x, t) to the integrable system, there exist a fundamental solution to the Lax pair,
so that one can think of a combination like – (ψ0, F0), (ψ1, F1), (ψ2, F2), and so on.

2.3 Classical 1-d Heisenberg Ferromagnet

Spin is an intrinsic property of a sub-atomic particle which is responsible for its magnetic
dipole moment. Moreover, it does not have a classical analogue. In ferromagnetic ma-
terials, net magnetic dipole moment of an individual atom never gets cancelled due to the
unpaired outer shell electron. This individual moment will try to align in the same direction
as that of its neighbors. This will give rise to a spontaneous magnetic moment for an ex-
tremely small region called domain, even in the absence of an applied magnetic field [18].
Underlying mechanism behind this ‘ordering’ is the spin-spin exchange interaction that
arises as a consequence of the Pauli exclusion principle [17, Sec. 76]. Dynamics of the
system is governed by the Hamiltonian [82, 83],

H = −J
N∑
i

Si · Si+1 (2.6)

where Si is the quantum mechanical spin operator for the i-th lattice and J is the exchange
integral. It is clear from the Hamiltonian that the exchange interaction is confined to nearest
neighbours. H given in (2.6) is widely known as Heisenberg Hamiltonian or Heisenberg
model [83, 84]. One can examine the classical limit of (2.6), say classical Heisenberg
model, by treating Si as (unit) 3-vectors on an arbitrary dimensional lattice and the vec-
tors that are nearest neighbours interact through their inner product. J > 0 leads to the
spin ordering in ferromagnets and J < 0 corresponds to antiferromagnets [18]. Classi-
cal Heisenberg model is a statistical model used to study ferromagnetism. This is n = 3

case of the more general n-vector model [85] also known as O(n) spin model describing
n-dimensional interacting classical spins on a lattice [86]. H is invariant under global rota-
tions in the spin space as the energy of interaction depends only on the relative orientation
of the nearby spin vectors. Equation of motion for the spin at i-th site can be obtained from
the Hamiltonian using,

d

dt
Ŝi = {Ŝi,H}. (2.7)
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If A and B are functions of spin, their Poisson bracket is given by [34],

{A,B} = εabc

N∑
j=1

∂A
∂Saj

∂B
∂Sbj

Scj (2.8)

where εabc being the usual Levi-Civita tensor and the summation over the repeated indices
is implied. Spin vector in terms of its components is given by, Ŝi = êaS

a
i + êbS

b
i + êcS

c
i .

Using (2.8), right hand side of (2.7) can be shown that, {Ŝi,H} = εabc êa
∂H
∂Sbi

Sci . From (2.6),
∂H
∂Sbi

= −J(Sbi+1 + Sbi−1) = −J
∑(i)

k Sbk, where
∑(i)

k implies the summation over nearest
neighbour k of i. Thus Eq. (2.7) turn out to be

d

dt
Ŝi = −J εabc êa

( (i)∑
k

Sbk
)
Sci = JŜi ×

(i)∑
k

Ŝk (2.9)

In the continuum limit, the distance between nearest neighbours approaches zero so that
Ŝi(t) can be replaced with a continuous function Ŝ(r, t). Expanding Ŝi+1 and Ŝi−1 around
Ŝi using Taylor series and applying the continuum limit h→ 0, yields

∑(i)
k Ŝk = 2Ŝ(r) +

h2∇2Ŝ(r). Finally, after suitable scaling in t,

d

dt
Ŝ(r, t) = Ŝ(r, t)×∇2Ŝ(r, t) (2.10)

This is called Landau Lifshitz Equation (LLE) [34, 87, 88]. We are interested in the (1+1)
- dimensional case (x and t) of this classical Heisenberg ferromagnet (HF) owing to its
integrability. Therefore, the required spin evolution equation, 1-d LLE, is given by,

Ŝt = Ŝ× Ŝxx, Ŝ2 = 1, (2.11)

where Ŝ = (S1, S2, S3) is the unit spin field of interest. Note that in this thesis, we examine
the HF model only in its classical version (or continuum limit) in (1+1) dimension. 1-d
LLE describes the dynamics of classical 1-d HF model. Henceforth, whenever HF model
is mentioned, it implies equation (2.11).

This is an ideal system with dimension (1+1) and there is no external field or damping.
Generalized ferromagnetic spin system can have higher dimensions and additional interac-
tions. In such a generalized spin system, a number of parameters are involved which makes
the system highly complex and non-integrable [32]. The 1-d LLE has a close relationship
with NLSE. Moreover, each solution of 1-d LLE (as well as NLSE) is associated with a
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moving space curve in IR3. Subsequently, these relationships will be discussed, but not in
its chronological order of development in history.

After the discovery of ‘solitons’ in the numerical study [70] of KdV equation, a general
method for obtaining solution in the closed form has been discovered by Gardner, Greene,
Kruskal and Miura, which is now known as inverse scattering transform (IST) [72]. By
employing IST, the integrability for NLSE [30] and HF model (or 1-d LLE) [33] has been
established. Gauge equivalence between these two is introduced in 1979 [19]. This will
be used in the thesis to derive the spin configuration that corresponds to a particular NLSE
solution. Lax pair for the HF model (or 1-d LLE) is given by [19],

Φx = UHFΦ = iλS Φ,

Φt = VHFΦ =
(
λSSx + 2iλ2S

)
Φ,

(2.12)

where S =
∑
Siσi, with σi, i = 1, 2, 3, being the Pauli matrices and Si the components

of the unit spin field Ŝ. Comparing (2.12) with (2.1) and making use of compatibility
condition (2.2), 1-d LLE (2.11) can be written in the matrix form:

St =
1

2i
[S,Sxx], S2 = I. (2.13)

If we write the Lax pair for the NLSE,

Ψx = UΨ,

Ψt = VΨ,
(2.14)

where U and V are connections defined in (2.4), Ψ is the fundamental solution of the Lax
pair. It is to be noted that, Ψ ∈ SU(2) Lie group whereas connections U, V ∈ su(2) Lie
algebra [80, p. 209]. Using gauge equivalence [19], spin configuration can be expressed as

S = lim
λ→0

Ψ†σ3Ψ. (2.15)

The NLSE and 1-d LLE are thus said to be equivalent. In other words, a solution ψ(x, t) to
the NLSE determined using Ψ that satisfies the Lax pair (2.14) then corresponds to a spin
configuration S(x, t) ∈ su(2) (in matrix form), through equation (2.15). In short, (2.15)
presents a systematic way of finding a spin configuration corresponding to each solutions
of NLSE obtained through inverse scattering transform technique.
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2.4 Moving space curves – Da Rios equation

Study of space curves is an integral part of differential geometry. It is possible to char-
acterize a curve in a coordinate independent way by specifying two continuous functions,
namely curvature and torsion [89]. For a curve parametrized by arclength x, curvature κ(x)

and torsion τ(x) can be expressed using a canonical ‘triad’ of three mutually perpendicular
unit vectors, defined everywhere on the curve (see Fig. 2.1). Let R(x, t) be the position
vector of the curve. The unit vectors ê1, ê2, ê3 of a triad, also known as tangent, normal
and binormal vectors respectively, are defined as follows:

ê1 = Rx, ê2 =
ê1x

|ê1x|
, ê3 = ê1 × ê2. (2.16)

Curvature and torsion are defined as,

κ = (ê1x · ê1x)
1
2 , τ = κ−2ê1 · (ê1x × ê1xx) . (2.17)

Geometrically, κ is a measure of local deviation of the curve from a straight line, while
τ gives a measure of rate at which osculating plane (determined by ê1 and ê2) turns [90,
p. 57].

R(x)

ê1

ê2

ê3

Figure 2.1: Triad

Motion of the triad along a static space curve is described by its derivatives with respect
to x, expressed by the Serret-Frenet system of equation. This was initially obtained in 1847
by Frenet and later independently by Serret in 1851 [89, p. 19], which may be written as

∂

∂x

ê1

ê2

ê3

 =

 0 κ 0

−κ 0 τ

0 −τ 0


ê1

ê2

ê3

 . (2.18)

Moreover, one can think of a moving space curve, where the time evolution of the triad is
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expressed in the rigid-body form [91, 92]

∂

∂t

ê1

ê2

ê3

 =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


ê1

ê2

ê3

 , (2.19)

where ωi’s are arbitrary functions of x and t. Zero curvature condition (2.2) for the above
system reads,

κt = ω3x + τω2, τt = ω1x − κω2, ω2x = τω3 − κω1. (2.20)

Lakshmanan et al. in a classic work [34], expressed the 1-d LLE (2.11) in coordinate
independent form using the identification, ê1 ≡ Ŝ. More simply, they found a curve for
which the tangents are spin vectors obeying 1-d LLE. As the HamiltonianH (2.6) is invari-
ant under a global rotation, the location and orientation of the curve are immaterial. Thus,
taking ê1 ≡ Ŝ, the 1-d LLE (2.11) can be expressed as

ê1t = ê1 × ê1xx, (ê1 · ê1 = 1). (2.21)

Having this additional expression, we are in a stage to write ωi’s in terms of κ and τ . This
can be done by using compatibility condition (êi)tx = (êi)xt, i = 1, 2, 3. It follows that
ω1 = κxx/κ − τ 2, ω2 = −κx, and ω3 = −κτ . Substituting ω1, ω2 and ω3 in (2.20) leads
to a coupled nonlinear partial differential equation [34], given in (1.2). Finding a general
solution for (1.2) is a challenging problem. However, solutions of the traveling wave type
have been obtained [34], which have energy localization in a finite region — a solitary
wave.

Intrinsic equations given in (1.2) were initially derived by Da Rios in an entirely differ-
ent context, describing the dynamics of a non-stretching thin vortex filament due to the self
induced velocity in an incompressible inviscid fluid. Assumptions employed in his study
omitted the long range effects of the vorticity, and came to be referred to as Localized
Induction Approximation (LIA) [13]. Much later, Arms and Hama rediscovered the LIA
equation in vector form [93], which can be conveniently written as,

Rt = Rx ×Rxx, (2.22)

where R(x, t) is the position vector of the vortex filament. Put it differently, velocity of
the filament, v = Rt = κ ê3, where κ is the curvature and ê3 is the binormal vector for
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the curve. Induced velocity on a segment of the filament is proportional to its curvature at
that point. Starting with (2.22), Betchov [94] derived a pair of intrinsic equations, wherein
κ and τ are coupled together almost in a similar fashion as that of (1.2), without being
aware of the work done by Da Rios. Hasimoto [37] introduced a complex function in terms
of κ and τ as a solution to the NLSE, provided that κ and τ satisfies the Betchov’s equa-
tion. Lamb [43, 95] extended this geometrical interpretation by setting a general formal-
ism, which is also applicable to integrable systems like sine-Gordon equation and modified
Korteweg-de Vries equation.

More specifically, the Hasimoto function

ψ(x, t) =
1

2
κ(x, t) exp

{
i

∫ x

0

τ(x′, t) dx′
}
, (2.23)

satisfies the NLSE, iψt + ψxx + 2|ψ|2ψ = 0, provided that κ and τ are solution to the
Da Rios equation (1.2). Alternatively, if ψ is expressed in the above form, the imaginary
part of NLSE turn out to be (1.2)(b), and the real part after a differentiation with respect
to x, becomes (1.2)(a). Moreover, if R(x, t) represents a non-stretching curve (|Rx| = 1),
differentiation of LIA (2.22) with respect to x, leads to Rtx = Rx ×Rxxx. Compatibility
condition on R gives Rtx = Rxt. An identification Rx ≡ Ŝ, leads to 1-d LLE (2.11).
Therefore LIA represents a moving space curve R(x, t), for which the tangent is a unit
spin vector Ŝ(x, t) field, obeying 1-d LLE (2.11).

To sum up, LIA (2.22) is the vector form of Da Rios equation (1.2). Lakshmanan
et al. [34] showed that 1-d LLE (2.11) and the Da Rios equation are equivalent. Hasi-
moto [37] and Lamb [43] proposed a space curve dynamics associated with each solution
to the NLSE. Following these developments, Lakshmanan extended their previous result of
classical HF model towards the NLSE, and combined above nonlinear systems (2.11), (1.2)
and (1.1) altogether [16]. Parallelly, it was shown by Zakharov and Takhtajan that classical
HF model and NLSE are gauge equivalent [19].

2.5 Soliton surfaces

Through the Lax pair formulation a non-linear system is represented as the compatibility
condition of a linear system. Recall Eq. (2.14) for instance, solving NLSE for ψ is then
equivalent to finding the fundamental solution Ψ. For a real spectral parameter λ, connec-
tions U and V taking values in matrix Lie algebra g, and Ψ is confined to the corresponding
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Lie group. The matrix function r(x, t, λ) given by Sym-Tafel formula [12]

r(x, t, λ) = Ψ−1(x, t, λ)Ψ,λ(x, t, λ), (2.24)

is then g - valued. Here, suffix denotes derivative with respect to λ. Function r(x, t, λ)

represents a λ - family of surfaces embedded into the Lie algebra g. The real parameter λ
enumerates the members of the family, i.e, copies of the surfaces. The concept of soliton
surfaces thus established the geometric nature of soliton solution which is applicable in a
broad class of integrable systems endowed with a Lax pair [45, 96]. In the case of NLSE,
Lie algebra of the linear system g is su(2) which is equivalent to R3, and the soliton surface
is therefore embedded into a 3-dimensional Euclidean space [80]. Interestingly, the space
curve associated with a soliton solution at any instant of time during its evolution is a
geodesic on the soliton surface. Otherwise stated, soliton surface r(x, t) is swept out by the
vortex filament under LIA and the tangent vector rt(x, t) is the spin field that satisfies 1-d
LLE [44].

Out of all λ - family of surfaces (2.24), one corresponding to λ = 0 describes the space
curve motion [46, 15]. Therefore, the curve given by

R = lim
λ→0

Ψ−1Ψλ, (2.25)

is a solution to the LIA (2.22). Obviously R ∈ su(2) can be expressed in Cartesian coor-
dinate system using an identification {iσ1, iσ2, iσ3} ≡ {̂i, ĵ, k̂} ∈ R3.

2.6 Darboux Transformation

This is a technique, in the form of a transformation relation, used to construct new soliton
solutions from fairly simple ones. DT technique is extremely useful in extending the re-
sults from NLSE scheme towards 1-d LLE and LIA. This is because, the transformation is
essentially acting on fundamental solution of the Lax pair.

2.6.1 Classical Darboux Transformation

The idea behind this transformation was first published in 1882 by the French mathe-
matician Gaston Darboux [97], and the term “Darboux Transformation” was coined by
Matveev [98] much later in 1979. Darboux studied the eigenvalue problem of Sturm-
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Liouville equation,
−φxx + u(x)φ = λφ, (2.26)

which is a linear partial differential equation of second order, well known in Quantum
mechanics as 1-d time independent Schrödinger equation. φ(x, λ) is the solution corre-
sponding to a potential function u(x), and λ is a constant called spectral parameter. If
f(x) = φ(x, λ0) is a fixed solution at λ = λ0, then (2.26) is covariant under the linear
transformation u→ u′ and φ→ φ′ given by

φ′ = φx −
fx
f
φ, u′ = u− 2(ln f)xx. (2.27)

In other words, if a combination (u, φ) satisfies (2.26), so does the new (u′, φ′). Such
transformation is called classical (original) Darboux transformation, and can be iterated as
follows

(u, φ) −→ (u′, φ′) −→ (u′′, φ′′) −→ · · · (2.28)

Note that the system (2.26) is a linear system. Associated with each solution φ, there exist a
potential u(x). The role of u(x) will be clear if we consider one more linear system which
is covariant under DT [99], as shown below,

φt = −4φxxx + 6uφx + 3uxφ. (2.29)

One can check the compatibility condition for these linear systems by computing (φxx)t

from (2.26) and (φt)xx from (2.29). Then for all λ, the necessary and sufficient condition
for (φxx)t = (φt)xx being an identity, turns out to be

ut − 6uux + uxxx = 0, (2.30)

which is the well known Korteweg-de Vries equation. Sign of the coefficient of uux is
unimportant [72, 100], since u → −u leads to the other form (1.16) given earlier. The
potential function u(x) now turn out to be the solution of an integrable system. This inte-
grable system is the compatibility condition for the system of linear equations (2.26) and
(2.29). The covariance of the linear system (2.26) and (2.29) along with the compatibil-
ity condition, ensure that the new potential u′ generated via DT will also be a solution to
(2.30). Therefore, in the context of DT, solitons (potential u) comes into picture when the
concerned integrable equation (say KdV) is represented as the compatibility condition for
a system of two linear equations which are covariant under DT.
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2.6.2 Matrix Darboux Transformation

Recall the system of linear equation (2.1), a matrix equation, known as Lax pair. Let
F (x, t, λ) be a matrix solution to (2.1), more particularly a fundamental solution of the Lax
pair. Here, in order to generate new solutions, one needs to find a transformation in the
form of a matrix operator. What is required here is a transformation from a known solution
F (x, t, λ) to an unknown solution F ′(x, t, λ). This must be accompanied by a transfor-
mation in connections U and V such that their structure remains unaffected. Consider the
transformation,

F (x, t, λ)→ F ′(x, t, λ) = G(x, t, λ)F (x, t, λ), (2.31)

along with

U → U ′ = GxG
−1 +GUG−1 (2.32a)

V → V ′ = GtG
−1 +GV G−1 (2.32b)

where G is an invertible matrix. Upon multiplying F ′ from the right in (2.32) and using
(2.31) in the right hand side, results in a new linear system of equations,

F ′x = U ′(x, t, λ)F ′, (2.33a)

F ′t = V ′(x, t, λ)F ′, (2.33b)

provided that F is a fundamental solution to (2.1). One can also verify from (2.32) that,

U ′t − V ′x + [U ′, V ′] = Ut − Vx + [U, V ]. (2.34)

Which means the compatibility condition in (2.2) is invariant with respect to the above
mentioned transformation. In physics such a transformation is called gauge transforma-
tion, and the representation of certain nonlinear system as the compatibility condition (2.2)
remains valid for the whole class of gauge-equivalent connections [79]. But, in general the
gauged system (2.33) may not have the same form as (2.1), i.e, the linear system may not
be covariant with respect to the transformation (2.32).

To make this clear, recall (2.4), wherein one can see the soliton solution ψ (soliton field
or potential) appearing in connections (U, V ) in a definite pattern. This will allow us to
call them as functions of ψ, say U(ψ) and V (ψ). The compatibility condition give rise to
the corresponding nonlinear equation, ψt = K(ψ, ψx, ψxx, ...). Now suppose, the gauge
equivalent connections in (2.33) is such that, U ′ = U(ψ′) and V ′ = V (ψ′). Then the
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compatibility condition leads to ψ′t = K(ψ′, ψ′x, ψ
′
xx, ...). A transformation in this manner

preserves the form of U and V , wherein one can replace the previous soliton solution ψ
with an updated one. This type of transformation is called matrix Darboux transformation,
for which a suitable choice of G(λ) is necessary [101, 80, 81]. We outline the procedure
below.

Let φ[1] and φ[2] be two known vector valued eigenfunctions of the Lax pair (2.1) cor-
responding to the parameters λ1 and λ2, where λ1 6= λ2. On the introduction of matrices

M0 = diag(λ1, λ2), H =
(
φ[1] φ[2]

)
, G0 = −HM0H

−1, (2.35)

the Darboux matrix G(λ) can be found in the form

G(λ) = λI +G0. (2.36)

As a remark: G0 is independent of λ. det G(λ) = (λ − λ1)(λ − λ2). A suitable function
g(λ), in transformation relation F ′ = g(λ)GF , may ensure that det F′ = 1, to make it
unitary if required.

Starting with a known solution ψ to the integrable system, a new solution ψ′ can be
obtained by,

ψ′ = ψ − 2i(G0)12, (2.37)

where, (G0)12 is the second element of the first row in G0. A natural choice of matrices M0

and H can be achieved in the following way,

M0 =

(
λ0 0

0 λ0

)
, H =

(
φ[1] φ[2]

)
=

(
φ1 −φ2

φ2 φ1

)
, (2.38)

To preserve the polynomial structure of U and V , and to ensure the covariance of the Lax
pair (2.1) under the transformation, G(λ) should satisfy [80, p. 277],

G(λ1)φ[1] = (λ1I +G0)φ[1] = 0, (2.39a)

G(λ2)φ[2] = (λ2I +G0)φ[2] = 0. (2.39b)

By the choice of M0 and H as given in (2.38), this condition is always satisfied. For a
detailed proof of these assertions and an elaboration of the technique, see Refs. [80, 81].
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Chapter 3

Breather solutions to the
nonlinear Schrödinger equation and
knotted space curves

3.1 Introduction

A space curve in IR3 can be characterized in a coordinate independent way by specify-
ing two single valued continuous functions κ(x) and τ(x), say curvature and torsion re-
spectively, where x being its arclength parameter. Such an equation is called natural or
intrinsic equation for the curve. The fundamental theorem of space curves [89] says that
there exists a unique curve (upto a global translation or rotation) for a given curvature and
torsion. Curves that are associated with nonlinear Schrödinger equation (NLSE) via Hasi-
moto map [37], ψ = 1

2
κ exp

[
i
∫ x

0
τ dx

]
are significant in the field of integrable systems,

as they reveal soliton behaviour geometrically. Moreover, they are physically realizable in
the context of fluid vortex dynamics in certain aspects.

In this chapter we present a new breather solution to the NLSE, where the associated
space curve is knotted. What is narrated in the space curve is the true essence of the solu-
tion, which in fact cannot be revealed merely by looking at the soliton profile. Since NLSE
is integrable, and is used to model a number of physical systems, this knotted breather so-
lution is promising, and it demands an in-depth study to uncover its physical interpretation
in various fields.

We will begin with an overview about various types of space curves associated with the
NLSE. Using Darboux transformation technique, a new breather solution over the plane
wave background ψh = κ0e

i
√

2κ0x, is obtained. The space curves associated with this
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breather is presented with detailed plots. Periodic knot formation in the space curve evolu-
tion is studied in detail. We note that spatially periodic case of the new breather solution is
related to the well known Akhmediev breather through a Galilean transformation.

3.2 NLSE and space curves: an overview

Before going into the results, a brief discussion about various solutions to the NLSE and
LIA is necessary. Each solution to the NLSE (1.1), ψ(x, t) is related to a space curve via
Hasimoto function [37, 16],

ψ =
1

2
κ eiσ, σx = τ, (3.1)

where κ and τ , respectively are the curvature and torsion of certain space curve parametrized
by its arc length x. As detailed in Sec. 2.4, the curve defined by κ and τ could be a solution
to the LIA equation

Rt = Rx ×Rxx, (3.2)

that describe, approximately the kinematics of a vortex filament in fluid under ideal condi-
tions.

3.2.1 Solitons

The most trivial solution
ψl = 0, (3.3)

corresponds to a straight line, since the curvature is zero (Fig. 1.3 (a)). Suffix l in (3.3)
represents ‘line’. The self-induced velocity on a segment of the vortex filament is propor-
tional to its local curvature [13], which is zero in this case. Hence this vortex line does
not move or change its shape in ideal situation. This is the most familiar example of a
vortex, known as “bathtub vortex” that forms in a rotating container with a small drain hole
at the bottom [38, Fig. 1]. The 1-soliton excitation over the zero background give rise to a
secant-hyperbolic envelop soliton [30],

ψsh = 2λ0I exp (iµ0R) sechµ0I , (3.4)

where µ0 = µ0R + iµ0I = 2λ0x − 4λ2
0t, and λ0 = λ0R + iλ0I is the complex scattering

parameter that determines the amplitude and velocity of the soliton. Two more constants
indicating the initial phase and position has been set to zero without loss of generality. This
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is a travelling wave solution that preserves its size and shape as it moves. The correspond-
ing space curve, the well known Hasimoto loop [37], can be thought of as the 1-soliton
excitation of a straight line vortex. This is a localized helical twist (Fig. 1.3(d)), travelling
along the straight line filament without any change in its size and shape. Small deforma-
tions of the real fluid vortex filament in the form of a helical twist that resembles solitary
waves have been observed in laboratory [41]; similarities have been noticed in real situ-
ations like tornadoes [42, Fig. 1]. Similarly, the 2-soliton solution describes two isolated
bumps as t→ ±∞, travelling with different speed (in general) which preserves their iden-
tity after the interaction (collision) [30]. Evidently, in the associated space curve one can
see two Hasimoto loops moving along the vortex filament; faster one overcome the other,
and regain their individual soliton structure after the interaction [46].

3.2.2 Breathers

A non-trivial seed solution
ψc = κ0 e

2iκ20t, (3.5)

for some real constant κ0, a plane wave of uniform magnitude and time dependent phase
describes a curve of constant curvature and zero torsion — a circle. Note that the suffix c

in ψc indicate ‘circle’ — its associated space curve (Fig. 1.3 (b)). An explicit expression
for the space curve as a solution to the LIA (3.2) may be written as [15]

Rc(x, t) =
1

2κ0

[
4κ2

0t î + sin(2κ0x) ĵ− cos(2κ0x) k̂
]
, (3.6)

a circle of radius 1
2κ0

travelling along î direction with a constant speed 2κ0 perpendicular
to the plane of the circle. The size and shape of the space curve is preserved as it evolves.
This is a model for the notable “smoke-ring” motion [39].

A soliton excitation over the plane wave ψc (3.5) generates a family of breather so-
lutions ψcb, which reduces to the iconic breather solutions — Kuznetsov-Ma breather
(KMB) [102, 103], Akhmediev breather (AB) [9], and Peregrine soliton (PS) [104] un-
der suitable limits [11]. Detailed calculations are provided in Appendix B. The associated
space curves, i.e., the soliton excitation of the smoke-ring (3.6) has been explicitly studied
by Cieśliński et al. [15]. In the time evolution, (many) localized loops gradually grows
out of a circular backbone that resembles petals of a flower opening process. These petals
turn around towards the other side of the circle, and eventually merge with the circular
backbone.
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(a) (b) (c) (d) (e)

Figure 3.1: Space curves [15] associated with Kuznetsov-Ma breather (KMB). The circular
backbone travels with a uniform speed. In the due course, a small loop comes out and goes
in as shown in frames (a)–(e), which will repeat in time.

(a) (b) (c) (d) (e)

Figure 3.2: Space curves [15] associated with Akhmediev Breather (AB). The circular
backbone travels with a uniform speed. In the due course, many small loops comes out and
goes in as shown in frames (a)–(e), which resembles a “flower opening and closure”. The
curve shown here is a closed one owing to the suitable choice of parameters, wherein the
number of loops (petals) can also be varied accordingly. However, unlike KMB (Fig. 3.1),
the “flower opening and closure” occurs only at once.

(a) (b) (c) (d) (e) (f)

Figure 3.3: Space curves [15] — more general case with λ0R 6= 0 (neither KMB nor AB).
Both the ends of the curve are asymptotically circles, which coincide only with λ0R = 0.
A small loop comes out and goes in as shown in frames (a)–(f), which is a quasi periodic
motion as a result of the overall rotation of the system. Self intersections do occur.
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A repeating “flower opening and closure” with only a single “petal” corresponds to
KMB, which is shown in Fig. 3.1. Space curves associated with Peregrine soliton (not
shown here) is similar to Fig. 3.1 but the process never repeat in time. A single “flower
opening and closure” with many (in fact infinite) “petals” corresponds to AB as shown in
Fig. 3.2. The general case (neither KMB, nor AB) involves two parallel circles travelling
together, connected by a loop that turn around both the circles in its time evolution. This
is shown in Fig. 3.3. These space curves have many self-intersections throughout the time
evolution which makes it impossible to observe them in real systems.

Space curve evolution generates a surface in R3 known as soliton surfaces (refer Sec. 2.5
for details). For instance, explicit soliton surfaces associated with the (spatially periodic)
Akhmediev breather are illustrated in Ref. [80, p. 150]. Periodic solutions or breathers
can also be thought of as ‘bound states’ of two or more ordinary solitons which are of
same velocities. This can be achieved by the special choice of parameters (for the velocity)
in an arbitrary N-soliton solution [30]. In space curve analogy, bound states can be seen
as two loop solitons moving together with the same velocity [105], which can be desig-
nated as a travelling breather. In this process, one loop periodically revolves around the
other, and generate a soliton surface as shown in Ref. [80, p. 126]. Stationary breathers
as ‘bound states’, then corresponds to a zero velocity for both the loops (solitons). The
soliton surfaces associated with stationary single soliton and travelling single soliton [80,
pp. 124-125] are in sharp contrast to the above (bound state) breathers. It is worthwhile
mentioning that in a geometric framework the transformation from one solution to another
(auto Bäcklund transformation) can be interpreted as a passage from one soliton surface to
the other [12, 45].

3.2.3 Travelling waves

There exist a special class of vortex filaments as solutions to the LIA which move steadily
without deformation. The steady motion of the vortex filament as a rigid body motion
has been studied extensively by Kida [106] where he obtained the solutions in terms of
elliptic integrals. Vortex filaments of invariant shape are often called Kida class of so-
lutions which are indeed the space curves associated with travelling wave solutions of
NLSE [107]. A straight line, circle, helix, Hasimoto loop, curve over a doughnut sur-
face, plane sinusoidal filament, elastica [108] all fall into the Kida class of solutions [106].
Travelling waves of NLSE in the form of periodic array of pulses can be expressed in terms
of elliptic integrals [109] which tend to an ordinary single soliton when the separation be-
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tween neighbouring pulses becomes infinite. Therefore, in the travelling wave spectrum
(cnoidal waves), there exists two distinct limiting cases. One is a single soliton solution
(or Hasimoto loop) and the other is a harmonic plane wave (or vortex ring). Bäcklund
transformation of Kida class of vortex filaments [110] then reduces to soliton excitation of
Hasimoto loop [46] and smoke ring [15] as two extreme limits. Curves over the doughnut
surface are in general open curves, but for a suitable choice of parameters it can form torus
knots [111, 112]. Unlike elliptic integral expressions as obtained by Kida, torus knot so-
lutions can be expressed in explicit analytic form using cylindrical polar coordinates [113,
Sec. 3].

3.3 Knotted breathers for the NLSE

We make use of Darboux transformation detailed in section 2.6 to obtain a new class of
breather solutions to the NLSE. This breather is indeed special because of the knot structure
present in its associated space curve; hence the name “knotted breather”. As pointed out
earlier (section 3.2.2) one can start from a non-trivial seed solution ψc(x, t) = κ0 e

2iκ20t,
to arrive at the well known breather solutions that are KMB, AB or PS, using any of the
standard techniques of obtaining soliton solutions. Instead, we start from a seed solution
— a plane wave of uniform magnitude and space dependent phase term,

ψh = κ0 e
i
√

2κ0x, (3.7)

for a real constant κ0. Seed solution ψh when compared with (3.1), describes a space curve
with curvature 2κ0 and torsion

√
2κ0. Therefore the associated space curve is a helix, which

is indicated by the suffix h in ψh.

3.3.1 Darboux transformation and fundamental solutions

A detailed steps for the DT technique is provided in Appendix A. In this section we present
only the necessary solutions needed for the discussion.

Each solution to the NLSE (1.1) corresponds to a fundamental solution to the Lax pair
(2.14). Seed solution ψh (3.7) corresponds to a fundamental solution Ψh(x, t, λ), to the
below Lax pair

Ψh,x = UhΨh,

Ψh,t = VhΨh,
(3.8)
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where Uh = U(ψh), and Vh = V (ψh). The connections U(ψ) and V (ψ) are given in (2.4).
We explicitly write the fundamental solution Ψh in the form,

Ψh(x, t, λ) =
1√
d

(
ϕ1 −ϕ2

ϕ2 ϕ1

)
, (3.9)

where,

ϕ1 =
(
a eiΩ/2 + b e−iΩ/2

)
e
i 1√

2
κ0x, ϕ2 = −

(
b eiΩ/2 + a e−iΩ/2

)
e
−i 1√

2
κ0x,

Ω = 2 f (x−
√

2µt), f =
1√
2

√
ν2 + 2κ2

0, µ = κ0 −
√

2λ, ν = κ0 +
√

2λ,

a = i(ν −
√

2f)−
√

2κ0, b = i(ν +
√

2f)−
√

2κ0, d = 16f 2.

(3.10)

The Darboux matrix G1(λ) can be found in the form G1(λ) = λI + G0. We write it
explicitly as,

G1 =

(
λ− λ0R 0

0 λ− λ0R

)
+ i

λ0I

χ

(
−ξ ei

√
2κ0x(ζ − i η)

e−i
√

2κ0x(ζ + i η) ξ

)
, (3.11)

wherein,
ζ = c1 cos(Ω0R) + c2 cosh(Ω0I),

η = c3 sin(Ω0R)− c4 sinh(Ω0I),

ξ = c4 sin(Ω0R) + c3 sinh(Ω0I),

χ = c2 cos(Ω0R) + c1 cosh(Ω0I),

Ω0 = Ω0R + iΩ0I = 2 f0 (x−
√

2µ0t), f0 = f0R + if0I = 1√
2

√
ν2

0 + 2κ2
0,

µ0 = µ0R + iµ0I = κ0 −
√

2λ0, ν0 = ν0R + iν0I = κ0 +
√

2λ0,

c1 = 2
(
4κ2

0 +2 |ν0|2 +4
√

2κ0 ν0I +4 |f0|2
)
, c2 = 2

(
4κ2

0 +2 |ν0|2 +4
√

2κ0 ν0I−4 |f0|2
)
,

c3 = 2
(
8κ0 f0I+4

√
2 (ν0R f0R+ν0I f0I)

)
, c4 = −2

(
8κ0 f0R+4

√
2 (ν0I f0R−ν0R f0I)

)
,

and λ0 = λ0R + iλ0I is an arbitrary complex spectral parameter also known as scattering
parameter in the framework of inverse scattering transforms. They also obey the conditions

ζ2 + η2 + ξ2 = χ2,

c2
2 + c2

3 + c2
4 = c2

1. (3.12)

Darboux transformation gives a new Ψ1 by,

Ψ1(x, t, λ, λ0) =
1√
d1

G1(x, t, λ, λ0) Ψh(x, t, λ), (3.13)
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where d1 = |G1| = (λ2 + |λ0|2 − 2λλ0R). Matrix solution Ψ1 satisfies the Lax pair

Ψ1,x = U1Ψ1,

Ψ1,t = V1Ψ1,
(3.14)

where U1 = U(ψ1), and V1 = V (ψ1), with an updated ψ1.

One may compare (3.8) and (3.14) to see how DT technique transforms Ψh to Ψ1

systematically. In the due course, seed solution ψh get updated to ψ1 — a new breather
solution to the NLSE. For calculation refer section A.2.3.

3.3.2 Explicit solution and breather profiles

Proceeding by the DT technique we arrive at the below solution, after some detailed algebra
— a three parameter one-soliton solution (or one-breather) given by

ψ1 = ei
√

2κ0x
(
κ0 − 2λ0I

(ζ − i η)

χ

)
, (3.15)

where the functions ζ , η and χ are defined below (3.11). Without any loss of generality,
parameters indicating the initial position and phase of the soliton are taken to be zero.

In general, the breather solution ψ1 (3.15) is periodic both in space and time, which is
clear from the soliton profile shown in Fig. 3.4(a). This is a travelling wave with oscillating
magnitude — hence the name “travelling breather”. A similar profile can be seen for ψcb

(B.22), which is the breather excitation over the plane wave ψc (3.5), by setting λ0R 6= 0

(see for instance, Ref. [114, Figure 7]). It is worthwhile mentioning that the well known
breathers AB, KMB and PS are fall into a class with λ0R = 0 in ψcb (B.22).

Further, we show a spatially periodic profile in Fig. 3.4(b), obtained from ψ1 (3.15) as
a special case, by choosing λ0R = −κ0/

√
2 and κ2

0 > λ2
0I . Such a choice was intended to

assemble soliton peaks at the t = 0 line. This can be explained as follows:
From the functions defined below (3.11),

ν0 = ν0R + i ν0I = (κ0 +
√

2 λ0R) + i
√

2 λ0I . (3.16)

When λ0R = − κ0√
2
, one get ν0R = 0, and ν0I =

√
2 λ0I . Substituting this in f0, it gives,

f0 = f0R + if0I =
1√
2

√
ν2

0 + 2κ2
0 =

√
κ2

0 − λ2
0I . (3.17)
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(b) Spatially periodic breather
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(c) Temporally periodic breather
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(d) Rogue breather

Figure 3.4: Soliton profile of ψ1 (3.15) in the x − t plane. (a) Breather periodic in both
space and time, for κ0 = 0.8, λ0 = −0.1 + 0.7 i (b) Akhmediev type breather obtained by
the condition λ0R = −κ0/

√
2 and κ2

0 > λ2
0I . Here κ0 = 1.0, λ0I = 0.6 (c) Kuznetsov-Ma

type breather, arises as a special case for f0I µ0R + f0R µ0I = 0. This condition is met by
setting, κ0 = 0.5, λ0 = −0.07 + 0.8 i (d) Rogue event as a limiting case of Akhmediev
type breather shown in (b), choosing λ0I ∼ κ0.

When κ2
0 > λ2

0I ,

f0R =
√
κ2

0 − λ2
0I , and f0I = 0 (3.18)

Periodicity and localization arises in ψ1 (3.15) via trigonometric and hyperbolic functions
respectively. Hence, we write the general expression for Ω0R and Ω0I explicitly as,

Ω0R = 2 f0R x+ 2
√

2 t (f0I µ0I − f0R µ0R),

Ω0I = 2 f0I x− 2
√

2 t (f0I µ0R + f0R µ0I).
(3.19)

As per the choice made, f0I = 0 from (3.18), thereby no x dependence in Ω0I (3.19).
Specifically, Ω0I ≡ Ω0I(t), a function of time alone. In brief, the condition λ0R = − κ0√

2

and κ2
0 > λ2

0I results in a localization at t = 0 line in the x−t plane as shown in Fig. 3.4(b).

Keeping the same condition one can obtain a rogue event as a limiting case. From
Ω0R (3.19), the periodicity along x can be found to be π/f0R, which tends to infinity for
λ0I ∼ κ0. This unveils the rogue nature of the breather solution as shown in Fig. 3.4(d).

In Fig. 3.4(c), the profile is temporally periodic. For this, one has to make Ω0I a function
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of x alone so that all the peaks gather together at the x = 0 line. From Ω0I (3.19), this can
be achieved by setting f0Iµ0R + f0Rµ0I = 0.

3.4 Galilean transformation

Even though the seed solutions ψc (3.5) and ψh (3.7) appear to be qualitatively different,
they are related to each other through a Galilean transformation. It may be recalled that
under the Galilean transformation

x→ x− vt, t→ t, (3.20)

the NLSE is invariant [11] through an additional phase change to the field function,

ψ → ψ exp [i(vx/2− v2t/4 + v0)], (3.21)

where v and v0 are arbitrary real constants. One can verify that, the plane wave solution ψc

transforms to ψh under the Galilean transformation for v = 2
√

2κ0 and v0 = 0. According
to the Hasimoto map (3.1), seed solution ψc has constant curvature but zero torsion which
implies a circle. Seed solution ψh is mapped to a helix where both the curvature and torsion
are non-zero constants. Thus the circle transforms to a helix. Specifically, the curve picks
up a torsion under Galilean transformation. Note that the transformation (3.21) can only
only be applied on the complex field ψ, but on the associated space curve, the corresponding
transformation is not as straight forward.

We have described in the previous section, a spatially periodic breather for λ0R = − κ0√
2

and κ2
0 > λ2

0I . A simplified expression for this “Akhmediev type breather” is given by,

ψGAB = −κ0 e
i
√

2κ0(x−x0) cosh(rt− 2iφ)− cosφ cos(q(x− vt))
cosh(rt)− cosφ cos(q(x− vt))

, (3.22)

where, q = 2κ0 sin(φ), r = 2κ2
0 sin(2φ), v = 2

√
2κ0, φ = cos−1(λ0I/κ0) and x0 = π/q.

Detailed steps are provided in section A.3 of Appendix A. It is clear that the above breather
is localized in t and periodic in x. For a comparison we write explicitly, the Akhmediev
breather (for details, refer section B.4),

ψAB = −κ0e
2iκ20t

cosh(rt− 2iφ)− cosφ cos(qx)

cosh(rt)− cosφ cos(qx)
, (3.23)
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where, q = 2κ0 sin(φ), r = 2κ2
0 sin(2φ) and φ = cos−1(λ0I/κ0). Comparing (3.22) with

(3.23), one can infer that a Galilean transformation of ψAB leads to ψGAB.

Galilean transformed Akhmediev Breather — ψGAB, initially obtained by Salman [29],
is therefore a special case of the breather solution we have presented here, upto a scaling
and suitable choice of parameters. An analogue of the Peregrine soliton as a limiting case
of Galilean transformed Akhmediev breather is studied by Salman in Ref. [115], by setting
λ0I ∼ κ0 in ψGAB,

3.5 Knotted space curves as solutions to the LIA

Now we will discuss the geometric side of the soliton solution by presenting the space
curves that are associated with seed solution ψh (3.7) and its Bäcklund transformation ψ1

(3.15). Hasimoto function (3.1) for ψh describes a helix via intrinsic quantities κ and τ in
a coordinate independent way. Explicit expression for the space curve as a solutions to the
LIA (3.2) can be constructed as detailed in section 2.4 and 2.5.

3.5.1 Helix as a seed curve

The space curve Rh associated with the seed solution ψh (3.7) is given by the Sym-Tafel
formula

Rh = lim
λ→0

Ψh
−1Ψh,λ, (3.24)

where Ψh (3.9) is the corresponding fundamental solution. The subscript λ denotes the dif-
ferentiation with respect to λ. Following a straight forward calculation and simplification,
we write the seed curve in R3 explicitly as,

Rh =
1

3

[(√
3(x+ 2

√
2κ0t)

)̂
i +
( 1

κ0

sin θ
)̂
j−
( 1

κ0

cos θ
)
k̂

]
, (3.25)

where θ =
√

6κ0(x−
√

2κ0t). The helix has a pitch
√

2π/(3κ0) and radius 1/(3κ0) which
are independent of time. This is a Kida class of vortex filament having a screw motion with
translation along its axis with velocity 2

√
2
3
κ0, and a rotation about its axis with period

T0 = π/(
√

3κ2
0). (3.26)

Curvature and torsion can be directly computed from (3.25) yielding κ = 2κ0 and τ =√
2κ0, as expected.
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3.5.2 Breather excitation over the helix

In the same manner, the space curve associated with the breather solution ψ1 (3.15) can be
obtained by

R1 = lim
λ→0

Ψ1
−1Ψ1,λ, (3.27)

where Ψ1 is the fundamental solution given in (3.13). The explicit expression after a
straightforward calculation can be shown to be

R1 = Rh +
λ0I

|λ0|2χ

[
− (
√

2η + ξ)√
3

î +

(
− ζ sin θ + cos θ

(η −
√

2ξ)√
3

)
ĵ

+

(
ζ cos θ + sin θ

(η −
√

2ξ)√
3

)
k̂

]
, (3.28)

where the functions ζ, η, ξ and χ were defined below (3.11), and θ is defined below (3.25).

The second term in (3.28) represents a rotating loop sliding down the helical backbone
Rh (Fig. 3.5). If the loop size is too small as compared to the pitch of the helix, motion
of the loop locally resembles Hasimoto loop to a certain extent. Unlike the loop soliton
motion on a filament with zero (or nearly zero) curvature, this travelling loop (for suitable
parameter) intersects with the helical backbone in a periodic fashion. With a reasonable
loop size which can be tuned through parameter value λ0I , self intersections occur, leading
to the formation of a knot structure, which is quite unexpected for an ordinary loop soliton
dynamics.

3.5.3 Periodic knot formation

The behaviour of the space curve displays a periodic nature where one can identify a cycle
with three successive intersections. Space curve dynamics is shown in Fig. 3.5 with five
frames taken from an entire cycle. The space curve carries a loop between the first two
intersections, whereas the curve has a knot for the remaining time. One cycle with period
Ttotal is thus subdivided into a loop phase and a knot phase with periods Tloop and Tknot,
respectively. Soliton profile at the same instant of time is also provided along with the curve
for a better comparison. The loop phase is characterized by a single large soliton peak in
contrast to the slowly varying small double peak of the knot phase. This can be understood
from the Hasimoto map (3.1) which relates the curvature of the associated space curve with
the magnitude of the soliton solution. When the curvature has a localized peak, the curve
takes a quick turn results in a loop. Whereas a knot structure in an extended open curve is
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reasonable with a slowly varying curvature with two small nearby peaks.

Generally the space curve presented here are periodic both spatially and temporally,
as that of the breather profile shown in Fig. 3.4 (a). Along with the period attributed to
the breather solution, background seed also has its own period, which is visible in the
curve picture as the rotation period of the helical backbone T0 (3.26), that is determined
by κ0 alone. T0 is in general incommensurate with the above mentioned Ttotal, and as a
consequence the space curve shown in Fig. 3.5 (a) and (e) are same but globally rotated. In
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Figure 3.5: The space curves R1 associated with the breather solution ψ1, and the cor-
responding energy (|ψ|2(x)) profile, through an entire period of its evolution. The real
and imaginary parts of ψ1 are indicated by (blue) dashed and (black) dotted lines respec-
tively. Successive self intersections marked by red dot on the curves. For this choice of
parameters, κ0 = 0.5 and λ0 = 0 + 0.5i, the filament forms a loop between the first two
intersections, (a) and (c), whereas it forms a knot for the remaining time, i.e., between (c)
and (e). Thus, the period Ttotal is subdivided into two phases — the knot phase with period
Tknot, and the loop phase with period Tloop. Energy localization is more profound in the
loop phase (with a large single peak) than in the knot phase (with two smaller peaks). The
curve in (a) is same as (e), but for a global rotation due to the period Ttotal being incom-
mensurate with the rotation period T0 of the helical backbone. For detailed animation, see
the supplementary material: knot.avi.

41

https://drive.google.com/open?id=1tmO7aEbu8ohCXyt6zFbQC-W70dwstJ_X


fact, an analytical expression for time period of the curve evolution, Ttotal can be derived
explicitly.

3.5.4 Analysis of time periods

It can be understood from Fig. 3.5 that Ttotal is same as the time difference between any
two nearby peaks in the breather profile. Recalling the breather expression ψ1 (3.15), one
can find that the peak occurs at Ω0I = 0, as it is the argument of hyperbolic functions,
whereas Ω0R being responsible for the periodicity via trigonometric functions. They are
explicitly given in (3.19). When using a more convenient coordinates, obtained by the
transformation,

x′ →
√

2

f0I

(f0I µ0R + f0R µ0I) t, t′ → t, (3.29)

it can be seen that,

Ω0R(x′, t′) =
2
√

2µ0I |f0|2

f0I

t, Ω0I(x
′, t′) = 0. (3.30)

It follows that the period

Ttotal =
2π

Ω0R

=
πf0I√

2µ0I |f0|2
, (3.31)

which depends on λ0R, λ0I and κ0, through f0 and µ0 defined below (3.15).

However, it is cumbersome to obtain an expression for Tknot and Tloop analytically due
to the complexity of the curve expression. Therefore we rely on a numerical approach
by evolving the curve R1 (3.28). This is to investigate the dependence of time periods
on the parameter λ0I , keeping the other two fixed. For ease of analysis we set λ0R = 0,
thus providing a constant speed (however, non-zero) for the travelling loop. While κ0

governs the helical backbone features, it is the relative value of κ0 and λ0I that determines
the size and shape of the loop. We numerically evolve the curve (3.28) in time, keeping
the parameters fixed, and successive intersections are recorded, the difference of which
yields either Tknot or Tloop. Classifying a knot (or unknot) directly from its position vector
computationally (without viewing) is quite difficult in geometry [116]. Viewing the curve at
the starting position helps to assign the time difference, either as Tknot or Tloop accordingly
(exceptional cases are taken care).

Observations are shown in the Fig. 3.6. Generally Tloop > Tknot, i.e, knots are always
short lived as compared to the loop phase. For certain intermediate ranges of λ0I , the curves
does not make any self intersections. In Fig. 3.6, we mark this range of values as ‘gray
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Figure 3.6: Time period of loop evolution as a function of λ0I , while κ0 and λ0R are
held constant. In the course of time (see Fig. 3.5), self intersections occur periodically,
switching a loop phase into a knot phase, with respective time periods Tloop (dashed lines)
and Tknot (solid lines). Ttotal = Tloop + Tknot. Generally Tloop > Tknot, i.e, loop phase
is dominating over the knot phase. No knots are formed for values beyond λ0I = 0.6
(at κ0 = 0.5, λ0R = 0), although intersections do occur. No intersections are noticed for
certain intermediate ranges of λ0I , indicated by gray bands. There are points where Tknot
vanishes, corresponding to two simultaneous self intersections. See Fig. 3.7 for details.
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(c) Ttotal = Tloop, Tknot = 0

Figure 3.7: (a) A loop with two sub-winding, or ‘petals’, for λ0I = 0.35 which falls under
the first (prominent) gray band shown in Fig. 3.6 for which no self intersections are noticed.
The size, shape and overall motion of the loop are fit in such a way that prevents any self
intersection as the loop rotates about the helix. (b) As λ0I is reduced the number of petals
increases, here seen with three for λ0I = 0.22, which falls under the second (prominent)
gray band of Fig. 3.6. (c) Two simultaneous intersections (shown here for λ0I = 0.6), with
a vanishing Tknot. For detailed animation, see the supplementary materials: no_int.avi for
(a), two_int.avi for (c).
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bands’. Curves corresponding to this ‘gray band’ parameter values are non intersecting
curves, as shown in Fig. 3.7 (a) for the first ‘gray band’, and (b) for the second ‘gray band’.
Note that the bands are numbered from right, and there are many more towards left. As λ0I

decreases, size of the loop increases, and involves sub-windings, or ‘petals’, which makes
the motion slightly complicated. Number of ‘petals’ in each ‘gray bands’ increases as we
moves towards the lower values of λ0I .

Beyond certain value of λ0I no knots are formed, although intersections do occur. Pre-
cisely, for λ0I > 0.6, there are no knots as seen in Fig. 3.6. The curve for λ0I = 0.6 is
shown in Fig. 3.7 (c), which indicate two simultaneous self intersections. This is also an
example for curves for which Tknot vanishes, on account of the two intersections occurring
simultaneously. As λ0I increases, the size of the loop decreases to a value smaller that the
radius of the helix, so that it fails to make knot structure.

3.5.5 Soliton surfaces

As elaborated in section 2.5, the geometric nature of soliton solution can be seen in soliton
surfaces. Soliton surface associated with the breather solution ψ1 (3.15) is presented in
Fig. 3.8. This is constructed by foliation of the knotted space curve previously discussed in
Fig. 3.5.

Figure 3.8: Soliton surface generated by the knotted space curve. The choice of parame-
ters, κ0 = 0.5 and λ0 = 0 + 0.5i, is same as that of Fig. 3.5.

3.6 Discussion

It is tempting to interpret the space curves presented here as a vortex filament in fluids under
LIA scheme. However we caution that the LIA is not an appropriate model to describe
vortex motion when non-local interactions are predominant. LIA deals with the velocity
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on the filament induced by its own vorticity disregarding long range effects. The more
rigorous treatment requires invoking the Biot-Savart law to compute the velocity field at a
given point induced by the vortex filament(s) in question [117, 118].

In the case of helical vortices, the velocity field induced in its vicinity [119], and the
velocity induced on the filament itself [120] have been extensively studied in literature. An
extended LIA for helical a vortex is suggested by incorporating the velocity induced by dis-
tant parts of the filament, which gives reasonable approximation for low pitch helices [121].
A detailed experimental study has already been performed by creating helical vortices un-
der controlled conditions in a vortex chamber, wherein left-handed, right-handed, station-
ary, precessing, double helix and entangled helices have been studied [40].

(a) (b) (c) (d) (e)

Figure 3.9: Time evolution of the space curve associated with Galilean transformed
Akhmediev breather ψGAB (3.22). The breather excitation is spatially periodic but local-
ized in time. Obtained from R1 (3.28) by the condition λ0R = −κ0/

√
2 and κ2

0 > λ2
0I .

Specifically κ0 = 1.0, λ0I = 0.6, same as that of the breather profile shown in Fig. 3.4 (b).
This space curve evolution has no self-intersection. For detailed animation, see the supple-
mentary material: curve_gab.avi .

As discussed in Sec. 3.3, a special case of the breather solution ψ1 (3.15) presented
here is related to the Akhmediev breather through a Galilean transformation. This special
case given in (3.22), was obtained earlier by Salman [29] by invoking such a transfor-
mation from the well known Akhmediev breather. The corresponding vortex filament is
constructed using Hasimoto map to investigate propagation of breathers along superfluid
vortex. Spatial periodicity present in the Akhmediev breather appears in the space curve as
periodic loops. These loops grows slowly in time, out of a uniform background – a helical
backbone in this case. After initializing the curve, a numerical integration can be carried
out using more realistic models like Biot-Savart law and Gross-Pitaevskii equation, along
with the LIA dynamics. Vortex bifurcation and re-connection process are incorporated in
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the numerical study accordingly, which leads to the formation of isolated vortex rings out
of each individual loops. The vortex ring thus formed moves away from the base curve
owing to its induced velocity, thereby suggesting a mechanism for transfer of energy con-
centrated in the vortex, to far away regions of the superfluid. A more detailed discussion
of space curves associated with this ‘Akhmediev like’ breather is given by Salman [115]
where the space curves associated with Peregrine soliton as a limiting case is also given
along with soliton profiles. We reproduce the space curves associated with ψGAB (3.22)
and presented in Fig. 3.9, which shows spatially periodic breather excitations in the time
evolution. We emphasize that knotted space curve presented in this work cannot be pro-
duced from Akhmediev breather for any choice of parameter values.

(a) (b) (c) (d) (e)

Figure 3.10: Time evolution of a travelling loop without self-intersection. Space curve R1

(3.28) for κ0 = 0.5, λ0 = −0.6 + 1.2i . For detailed animation, see the supplementary
material: loop.avi .

Dynamics of a loop in a helical vortex is observed experimentally in real fluid in the
context of vortex re-connection studies. Helical vortex is made under controlled conditions
wherein an isolated loop responsible for the self intersection turns into an isolated vortex
ring through a vortex re-connection process. Images taken from this study by Alekseenko
et al. [122] are similar to the curve dynamics we have presented here to some extent (see for
instance, Fig. 3.5 and Fig. 3.10 respectively for intersecting and non-intersecting travelling
loop). However, in their studies, one of the turns of the helix begins to rise, and become a
loop, which has no correlation with the space curve dynamics discussed here. They have
shown that right after the vortex re-connection, Kelvin waves — wave modes arising from
perturbation of vortex tubes, are formed [123]. In these studies, the self-intersections occur
without the presence of any external vortices. Relying on the similarities, it is reasonable
to suggest that the space curve given in this work would be helpful to study kelvin waves
of various modes. One has to incorporate vortex re-connection events along with a nu-

46

https://drive.google.com/open?id=1dBfRtMGqIhCBG2wDJmpFaGJf00E1l-Bb


merical integration of Biot-Savart law as described in Ref. [29]. Vortex rings formed via
re-connection are rarely linked with the helical vortex [122], and is of size nearly double as
that of isolated rings. This could be modelled by tuning the loop size accordingly in such a
numerical study.

3.7 Conclusion

Being a logical connection well rooted in the mathematical framework of soliton theory, the
geometrical space curves that are associated with non-linear Schödinger equation (NLSE)
is of academic interest in addition to its physical relevance as an approximate description
of a vortex filament in fluids. What is narrated in the space curve is the true essence of
the solution, which in fact cannot be revealed merely by looking at the soliton profile. In
this work we found a new class of breather solution to the NLSE, which is in a geometrical
language, one-soliton excitation of helical space curve, and have shown that it has a knot

structure, albeit short-lived. Helix is more general as compared to a line or a circle because
both the curvature and torsion of a helix are non-zero. Soliton excitation in such a back-
ground may possess general features so far not witnessed in other existing space curves.
There exist space curves in the form of stable knots of Kida class. However we empha-
size that they are associated with periodic solutions to the NLSE which are qualitatively
different from a breather solution.

The spatially periodic case of the knotted breather presented here is shown to have a
relation with Akhmediev breather via Galilean transformation. Their background space
curves are a helix and a circle respectively. A circle and a helix are associated with plane
wave solutions that are related through a Galilean transformation. It is known that, a
Galilean transformation of the Akhmediev breather leads to a spatially periodic breather.
We show that, the same can be achieved from a seed solution associated with a circle,
through a Galilean transformation followed by a Darboux transformation, for suitable pa-
rameter values. The general question of permutability of the two types of transforms, how-
ever remains open.

Bifurcation and vortex re-connection in fluids or superfluids are beyond the scope of
LIA scheme. Nevertheless non-intersecting space curves presented here are in agreement
with the experimental observation of helical vortex and its excitations, to a certain extent.
Nowadays knotted vortices are not just a mathematical curiosity as the vortices in the form
of trefoil knot in real fluids have been created in laboratory recently [124].

Since NLSE is integrable, and is being used to model a number of physical systems,
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this knotted breather is promising, and it demands an in-depth study to uncover its physical
interpretation in various fields.
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Chapter 4

Rogue waves in Heisenberg ferromagnet

4.1 Introduction

Classical HF spin chain and nonlinear Schrödinger equation (NLSE) are gauge equivalent.
They speak the same fact in different languages. For NLSE, the breather solutions are quite
familiar. We examine the corresponding breather solutions in the HF spin chain. We are
trying to answer the following question in its generality: what does a breather means to a
spin chain?

The procedure is as follows: we investigate the NLSE first, starting from a plane wave
ψc = κ0e

2iκ20t as seed solution. Breather solution is found using DT technique. Correspond-
ing solution to the linear system (Lax pair) is also obtained. Using the gauge equivalence
relation, the required spin filed (solution to the HF model) is explicitly constructed. Spa-
tially periodic case is studied, wherein a rogue mode is identified for suitable parameters.
Spin chain and its dynamics is visualized using detailed plots.

We observe a peculiar geometrical feature — the belt trick demonstrated by the spin
chain in the process of breather excitation. The spin breather considered in our study, a
special magnon mode, is essentially a counterpart of Akhmediev breather. Therefore the
nonlinear process observed here is nothing but a recurrence phenomena. Since Lax pair
solution is an SU(2) group element, breather excitation is also visualized in the group mani-
fold. Interestingly, the breather mode helps to divide the solution space into two topological
sectors with distinct energy bounds.
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4.2 1-Soliton in classical HF spin chain

First, we briefly recall the interconnection between classical HF model and the NLSE. A
detailed description is provided in sections 2.3 and 2.4. We consider the one-dimensional
nonlinear Schrödinger equation (NLSE) of focusing type given by,

iψt + ψxx + 2|ψ|2ψ = 0. (4.1)

This system is gauge equivalent to the 1-d classical HF model, for which the dynamics is
described by one dimensional Landau Lifshitz Equation (LLE),

Ŝt = Ŝ× Ŝxx, (Ŝ2 = 1). (4.2)

Lax representation for the NLSE gives an associated linear system (2.14) known as Lax
pair. Therefore, every solution ψ to the NLSE corresponds to a matrix solution Ψ to its Lax
pair. Gauge equivalence provides a systematic way of constructing a spin configuration by
(2.15), S = limλ→0 Ψ†σ3Ψ. This spin field satisfies 1-d LLE, where S = S1σ1 + S2σ2 +

S3σ3 ≡ S1̂i + S2̂j + S3k̂. Energy density of the spin field can be expressed as [19],

E = Ŝ2
x = 4|ψ|2. (4.3)

The trivial solution ψl = 0 has its counterpart Ŝl = 0̂i + 0̂j + 1k̂, which is a static
field. Suffix l indicates ‘line’, its associated space curve (Fig. 1.3 (a)). Energy density (4.3)
is zero because the spins are strictly parallel throughout the spin chain. Starting from this
zero seed solution, a 1-soliton can be obtained which is the well known travelling wave of
‘secant-hyperbolic’ form [30],

ψsh = 2λ0I exp (iµ0R) sechµ0I , (4.4)

where µ0 = µ0R + iµ0I = 2λ0x − 4λ2
0t, and λ0 = λ0R + iλ0I is the complex scattering

parameter that determines the amplitude and velocity of the soliton. Two more constants
indicating the initial phase and position has been set to zero without loss of generality. For
a qualitative description of the spin field, notice the z-component of the corresponding spin
field [35, 33],

S3 = 1− 2λ2
0I

|λ0|2
sech2(2λ0Ix− 8λ0Iλ0Rt), (4.5)

tends to ‘1’ except for a small region of the spin chain at any instant of time. This indicates
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a localized disturbance (or excitation) in a 1-d isotropic spin field, which travels with a
uniform speed. This is the 1-soliton excitation in classical HF model shown in Fig. 1.2.
Energy density is in the form sech2(x − ct), where c is the velocity. Total energy

∫
Edx,

is finite even for an infinite spin chain.

4.3 Seed solution: a spatially periodic spin chain

Apart from travelling waves, the NLSE also allows breather solutions. A solution is said to
be a breather if the field variable is localized, and in addition has a periodic nature, either
in space or in time. There exist some well known breather solutions to the NLSE: the time
periodic Kuznetsov-Ma breather(KMB) [102, 103], spatially periodic Akhmediev breather
(AB) [9] and a special case of both — Peregrine soliton (PS) [104], for which periodicity
in space and time are infinite. A breather solution is obtained using inverse scattering
transform (or any other standard method for obtaining soliton solutions), if one start with a
seed solution,

ψc = κ0 e
2iκ20t, (4.6)

for an arbitrary real constant κ0. Suffix c indicates the associated space curve, a ‘circle’
(Fig. 1.3 (b)). Seed solution ψc acts as a uniform background for the breather solution, in
contrast to the zero background as in the case of ‘secant-hyperbolic’ soliton. In order to
construct the spin configuration associated with ψc, the corresponding matrix solution to
the Lax pair is required (for details refer section 2.3).

4.3.1 Seed solution and the Lax pair

Seed solution ψc corresponds to a matrix solution Ψc to the below Lax pair

Ψc,x = UcΨc,

Ψc,t = VcΨc,
(4.7)

where Uc = U(ψc), and Vc = V (ψc). The connections U(ψ) and V (ψ) are given in (2.4).
We explicitly write the matrix solution Ψc in the form,

Ψc(x, t, λ) =
1√
d

(
ϕ1 −ϕ2

ϕ2 ϕ1

)
, (4.8)
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wherein,

ϕ1 =
(
e−iω/2 + i

(λ− p)
κ0

eiω/2
)
eiκ

2
0t, ϕ2 =

(
i

(λ− p)
κ0

e−iω/2 + eiω/2
)
e−iκ

2
0t,

ω = 2 p(x+ 2λt), p = (κ2
0 + λ2)1/2, d = 4(κ2

0 + λ2 − λp)/κ2
0.

(4.9)

We have assumed the form of ϕ1 and ϕ2 in (4.8), similar to the form given by Yan-Chow
Ma [103, Sec. II], then substituted in (4.7) to obtain its exact expression as given in (4.9).

4.3.2 Explicit expression for the seed spin

Spin configuration associated with ψc (4.6) can be obtained using the expression,

Sc = lim
λ→0

Ψc
†σ3Ψc (4.10)

where Ψc is given in (4.8). Following a straight forward calculation the spin configuration
can be written in the vector form as,

Ŝc = cos(2κ0x)̂j + sin(2κ0x)k̂. (4.11)

Without loss of generality, two constants indicating global rotation and translation are set
to zero. This “seed” spin is a static field (independent of t) with energy density 4κ2

0. Spin
vectors are arranged in one dimension whereas each of them has the freedom to trace a
curve over a (unit) sphere. The state space of the system is then S2 × S1.

Spatial periodicity of the spin field makes it easier to look at a repeating segment of
size L, with κ0 = nπ/L, where n is any integer. The continuous spin chain of size L as in
(4.11), thus corresponds to a finite total energy,

E0 = (2nπ)2/L. (4.12)

Such a repeating segment for n = 2 is shown in Fig. 4.1 (a), where spins at the boundaries
are identified. This enables us to think of a circular lattice of length L, upon which the
spins are fixed. This circular lattice will be much helpful in our further analysis. In this
description the spin field constitutes a closed ribbon as shown in Fig. 4.1 (b), so that the
computation of number of turns become easier, apparent and accurate as compared to the
open belt.

Quite recently, Darboux transformation of the classical HF model has been constructed
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(a) (b)

Figure 4.1: Spin configuration Ŝc (4.11) for 0 < x < L, where L = nπ/κ0, with n = 2 .
(a) The locus of the top (bottom) of the spin vector are marked in color red (blue) which
can be viewed as two boundaries of a belt. This open belt has n number of turns. (b) Due to
spatial periodicity, spins at x = 0 and x = L are identified, and can be viewed as a closed
belt with n number of turns.

starting with a more general plane wave solution [125, 126], wherein the seed solution
(4.11) arises as a special case. Although breather (rogue) modes were obtained therein,
their investigation was carried out in terms of individual vector components (S1, S2, S3)
and its variations in the time evolution. Moreover, their study is confined in the domain of
classical HF model. On the other hand, a comparative study between classical HF model
and the NLSE, in the context of breather (rogue) excitation has been done recently [127].
In this work, instead of DT technique, the space curve formalism has been employed to
obtain the curvature and torsion associated with NLSE breather solutions. Energy and
momentum of the spin chain are thus obtained and localization properties of the rogue
waves are discussed. In view of the above developments, our study goes beyond this by
exploring the geometrical features of the spin breather.

4.4 Breather modes in classical HF spin chain

Starting with seed solution ψc (4.6), we arrive at breather solution, say ψcb, using Darboux
transformation technique detailed in Sec. 2.6. Advantage of the DT technique is that it pro-
vides the corresponding matrix solution to the Lax pair, Ψcb, along with the breather. We
will first write down an explicit expression for Ψcb, and then move on to the corresponding
spin breather.
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4.4.1 Darboux transformation

A detailed steps for the DT technique is provided in Appendix B. In this section we present
only the necessary solutions needed for the discussion. The Darboux matrix P1(λ) can be
found in the form P1(λ) = λI +G0. We write it explicitly as,

P1 =

(
λ− λ0R 0

0 λ− λ0R

)
+ i

λ0I

∆

(
−γ −e2iκ20t(α− i β)

−e−2iκ20t(α + i β) γ

)
, (4.13)

wherein,
α = b1 cosω0R + b2 coshω0I ,
β = b3 sinω0R − b4 sinhω0I ,
γ = b4 sinω0R + b3 sinhω0I ,
∆ = b2 cosω0R + b1 coshω0I

ω0 = ω0R + iω0I = 2p0(x+ 2λ0t), p0 = p0R + ip0I =
√
κ2

0 + λ0
2,

b1 = 2(λ2
0I + p2

0R − λ0Rp0R − λ0Ip0I), b2 = 2κ0(p0I − λ0I),
b3 = −2(λ2

0R + p2
0I − λ0Rp0R − λ0Ip0I), b4 = 2κ0(p0R − λ0R),

and λ0 = λ0R+iλ0I is the scattering parameter in the language of IST. Functions α, β, γ,∆
and the constants bi also satisfy conditions,

α2 + β2 + γ2 = ∆2,

b2
2 + b2

3 + b2
4 = b2

1.
(4.14)

Darboux transformation gives a new Ψcb from old Ψc (4.8) by,

Ψcb(x, t, λ, λ0) =
1√
d1

P1(x, t, λ, λ0) Ψc(x, t, λ), (4.15)

where d1 = |P1| = (λ2 + |λ0|2 − 2λλ0R). Matrix solution Ψcb satisfies the Lax pair

Ψcb,x = UcbΨcb,

Ψcb,t = VcbΨcb,
(4.16)

where Ucb = U(ψcb), and Vcb = V (ψcb). One may compare (4.7) and (4.16) to see how
DT technique transforms Ψc to Ψcb systematically. In the due course, seed solution ψc gets
updated to ψcb — a breather solution to the NLSE over the background ψc.
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4.4.2 Breather solution to the NLSE

As pointed out earlier, breather solution to the NLSE over the seed ψc (4.6) is well known
in the literature. An explicit analytical expression for this breather solution in its entire
generality is given in Ref. [114]. We reproduce the same below for immediate reference:

ψcb = e2iκ20t
(
κ0 + 2λ0I

(α− i β)

∆

)
, (4.17)

where the functions α, β and ∆ and the parameters are defined below (4.13). (Details of
the derivation is provided in Appendix B)

One of the remarkable case is when λ0R = 0, wherein a condition κ0 < λ0I leads to
KMB, and κ0 > λ0I leads to AB. A limiting case of both yields PS. We have described
these special cases in Appendix B. In what follows, we will examine the spin configuration
associated with the NLSE breather ψcb.

4.4.3 Explicit expression for the spin breather

Spin configuration associated with ψcb (4.17) can be obtained using the expression,

Scb = lim
λ→0

Ψcb
†σ3Ψcb (4.18)

where Ψcb is given in (4.15). Calculation is quite tedious but straight forward. We write
explicit expression for the spin field in vector form as,

Ŝcb(x, t) =
λ2

0R − λ2
0I

|λ0|2
Ŝc +

[
2λ2

0I

|λ0|2∆2
γβ − 2λ0Iλ0R

|λ0|2∆
α

]̂
i

+

[
2λ2

0I

|λ0|2∆2
γ
(
γ cos(2κ0x)− α sin(2κ0x)

)
− 2λ0Iλ0R

|λ0|2∆
β sin(2κ0x)

]̂
j

+

[
2λ2

0I

|λ0|2∆2
γ
(
α cos(2κ0x) + γ sin(2κ0x)

)
− 2λ0Iλ0R

|λ0|2∆
β cos(2κ0x)

]
k̂, (4.19)

where the functions α, β, γ and ∆ and the parameters are defined below (4.13), and Ŝc is
given in (4.11) This is a three parameter family of solutions, where κ0 is a real constant
introduced in (4.6), and a complex eigenvalue λ0(= λ0R + iλ0I) is the scattering parameter
in the language of IST.

55



4.4.4 Limiting cases

• When λ0I = 0, breather ψcb (4.17) reduces to the seed ψc (4.6), and spin breather Ŝcb

(4.19) reduces to the seed spin Ŝc (4.11).
•When κ0 = 0, breather ψcb (4.17) reduces to “secant-hyperbolic” solution ψsh (4.4), and
the spin breather Ŝcb (4.19) reduces to the corresponding soliton excitation (of the secant
hyperbolic type) in the classical HF spin chain [14].

One can verify this by setting p0 = −λ0. This will leads to ω0 = −2λ0(x+ 2λ0t). The
constants bi then reduces to,

b2 = b4 = 0, b1 = −b3 = 4|λ0|2. (4.20)

Functions α, β, γ and ∆ become,

α = b1 cosω0R, β = b3 sinω0R, γ = b3 sinhω0I , ∆ = b1 coshω0I . (4.21)

This will readily give,

ψcb(κ0 = 0) = 2λ0I
(α− iβ)

∆
= 2λ0I

(cosω0R + i sinω0R)

coshω0I

= 2λ0Ie
iω0R sech(ω0I).

(4.22)
Corresponding spin configuration can be found to be,

Ŝcb(κ0 = 0) =

[
2λ0I

|λ0|2
sechω0I

(
λ0I tanhω0I sinω0R − λ0R cosω0R

)]̂
i

+

[
1− 2λ2

0I

|λ0|2
sech2 ω0I

]̂
j +

[
2λ0I

|λ0|2
sechω0I

(
λ0I tanhω0I cosω0R + λ0R sinω0R

)]
k̂. (4.23)

4.4.5 Spatially periodic breather

The spin field Ŝcb (4.19) is difficult to analyse in its entire generality. However, it does have
all the attributes of a breather, which make it relatively simple in certain limits. In fact, the
real part of the spectral parameter, here labelled λ0R, is responsible for the velocity of
the breather. This will be set to zero in the following discussion without losing any of the
qualitative features. For our further analysis, we shall consider a purely imaginary complex
parameter,

λ0 = 0 + i λ0I = i a, (4.24)
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where a is positive. Then, the spin field in (4.19) reduces to a simpler form:

Ŝcb = −Ŝc +
2γ

∆2

[
β î +

(
γ cos(2κ0x)− α sin(2κ0x)

)̂
j +
(
α cos(2κ0x) + γ sin(2κ0x)

)
k̂

]
(4.25)

Here, Ŝc is the seed solution given in (4.11), and α, β, γ and ∆ were defined below (4.13).
Now we have two distinct cases, i) κ0 < a and ii) κ0 > a. Besides these two cases there is
one more interesting case — the rogue behaviour, when a ∼ κ0, that will be discussed in
detail in the next section.

Beforehand, it is to be noted that the functions α, β, γ and ∆ are depending on x and t
through ω0. Hence, we write its real and imaginary parts explicitly as,

ω0R = 2p0R x+ 4t(p0R λ0R − p0I λ0I),

ω0I = 2p0I x+ 4t(p0R λ0I + p0I λ0R).
(4.26)

• Case (i) — κ0 < a: From the expressions given below (4.13), p0 =
√
κ2

0 − a2 is purely
imaginary. Thus ω0R is a pure function of time, while ω0I is a function only of x. In short,
ω0R = ω0R(t) and ω0I = ω0I(x). Periodicity in α, β, γ and ∆ arises from ω0R, whereas the
localization comes from ω0I . Thus the spin field is localized in space, and periodic in time,
with a period

T =
π

2a
√
a2 − κ2

0

. (4.27)

Since we are looking for a spin chain with periodic boundary condition to have finite total
energy, this case is disallowed.

• Case (ii) — κ0 > a: Here, we have p0 =
√
κ2

0 − a2, which is purely real. The variables
defined below (4.13) reduce to the following:

α = 2κ2
0 cosω0R − 2κ0a coshω0I ,

β = −2κ0

√
κ2

0 − a2 sinhω0I ,

γ = 2κ0

√
κ2

0 − a2 sinω0R,

∆ = −2κ0a cosω0R + 2κ2
0 coshω0I ,

ω0 = ω0R + iω0I = 2
√
κ2

0 − a2(x+ 2iat).

(4.28)

In contrast to case (i), the breather is now periodic in space due to ω0R = ω0R(x), and
localized in time as ω0I = ω0I(t). Spatially, the field is composed of two periodic functions
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with periods generally incommensurate,

L1 =
π

κ0

, and L2 =
π√

κ2
0 − a2

= ρL1, (4.29)

where ρ = 1/
√

1− a2/κ2
0. From (4.28), it can be verified that at a = κ0, the spin field

get reduced to the background seed field that we started with. Situation is same at a = 0

as discussed in Sec. 4.4.4. So we are left with strict case 0 < a < κ0. In order to satisfy
our condition for periodicity, Ŝcb(x + L, t) = Ŝcb(x, t), the spatial periods given in (4.29)
should be in such a way that,

L = nL1 = mL2 (4.30)

wherem and n are positive integers. Thus, from (4.29), ρ = L2/L1 = n/m, or equivalently
a = π

L

√
n2 −m2. Note that n > m since ρ ∈ (1,∞) .

In the language of NLSE, case (i) corresponds to time periodic Kuznetsov-Ma Breather
(KMB) whereas case (ii) is associated with the spatially periodic Akhmediev Breather (AB)
(refer Appendix B for details). The rogue breather mode arises as an intermediate limiting
case, when both the periods tend to infinity. The rogue wave is highly localized in space
and time. The field variable suddenly gets enhanced locally in space, and is sustained only
for a short duration. From (4.27) and (4.29), it can be seen that a rogue corresponds to the
case when |κ2

0 − a2| ∼ 0, or equally ρ→∞. However, in our finite system of size L with
periodic boundary conditions, the nearest possible one is when ρ = n/m is largest, i.e.,
when m = 1 for any given n. Consequently, we shall identify this as the rogue spin mode

in the finite ferromagnetic spin chain. As a further justification for the rogue behaviour,
we show in Fig. 4.2, a sudden colossal rise in the energy density profile, localized in both
space and time, commonly ascribed to rogue waves.

-4

 0

 4t
-4

 0
 4

x

 0

 3

 6

E

Figure 4.2: The energy density E(x, t) = (Ŝx)
2 in the x − t plane for m = 1, n = 2 and

κ0 = 0.5 (L = 2π/κ0 and a =
√

3π/L) — rogue spin mode, for Ŝcb (4.25). A short-lived
intensification of energy local in both space and time accredited to rogue waves.
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4.5 The rogue mode and the ‘belt trick’

In the previous section we have discussed a class of spatially periodic spin breathers for
κ0 > a, with periods L1 and L2 as given in (4.29). Further we identified a rogue event
particularly for the finite spin chain with periodic boundary condition. In a finite spin chain
of size L(= nL1 = mL2), rogue occurs with largest possible ρ(= n/m, n > m). As
discussed earlier, the breather vanishes for a = 0 and a = κ0, or in terms of ρ, there is
no breather for ρ = 1 and ρ = ∞. For this reason m = n and m = 0 are overruled.
Therefore we take m = 1 as the rogue situation in finite spin chain, for any n = 2, 3, ..

etc. We set n = 2 in this study, as this is the one with lowest total energy in this class
(Eq. (4.12)). We also set κ0 = 0.5 in this study without loss of generality. For instance
see Fig. 4.2, with background energy density 4κ2

0 = 1, from (4.3). The length of the chain
is L = nπ/κ0 = 4π. We have chosen −L/2 < x < L/2, in order to place the rogue
excitation at the origin of the x− t plane.

The above mentioned rogue wave is valid only in finite spin chain. Essentially we are
dealing with a spatially periodic breather (Akhmediev type) in HF model, but looking at a
repeating segment of length L = nπ/κ0. In this segment the dynamics appears as a rogue
event with a single energy peak as shown in Fig. 4.2. However, for a true rogue event one
can think of an infinite spin chain with |κ2

0 − a2| ∼ 0.

We have shown the seed spin with n = 2 in Fig. 4.1 which will act as the background
field, over which the rogue excitation occurs. There, for the sake of illustration we have
used red (blue) lines to indicate the locus of the top (bottom) of the spin vector. The two
lines can be viewed as the two boundaries of (an open) belt surface. Due to the spatial
periodicity spins at x = 0 and x = L are identical, allowing us to make the belt a closed
one with n number of turns. In what follows, we will study the dynamics of spin chain in
terms of the topological feature — net turns, present in this belt.

4.5.1 Open belt and the number of turns

We show the complete time evolution of rogue spin mode Ŝcb (4.25) in Fig. 4.3. As ex-
pected, the dynamics begins from a smooth periodic background as t → −∞ and eventu-
ally recover the same initial condition as t → +∞. One can think of an open belt made
up of series of spin vectors from one end to the other. The initial and final state of the
belt has two complete turns between its ends, since n = 2. In the rogue excitation, there
is an intermediate phase where the net turns present in the belt becomes zero. This is
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

Figure 4.3: Rogue wave in classical HF spin chain. Time evolution of the spin configura-
tion Ŝcb (4.25) for n = 2 and m = 1. (a) and (k) corresponds to the background spin field
at t→ ±∞, where the net number of turn is two. (f) corresponds to an instant t = 0, where
the energy peak has its maximum, with net turns in the spin chain is surprisingly zero. For
detailed animation, see the supplementary material: belt_trick1.avi .
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quite dramatic because each spin vectors evolve continuously in time, rotated only by an
infinitesimal amount from its neighbour. However the overall behaviour of the spin chain
shows a singular shift form ‘two total turns’ to ‘no net turn’. Another interesting fact is
that in Fig. 4.3 (a) and (k), all the spin vectors are lying in a plane, more precisely y − z
plane (refer Ŝc (4.11)). If one moves along the chain from one end to the other, i.e., along
the x axis, the spin field rotates two times in this plane amounting to a total ‘twist’ of ‘2’.
However, in the intermediate stage through its evolution, Fig. 4.3 (f), the total twist about
the axis is ‘zero’.

We further observe that Fig. 4.3 (f) corresponds to an instant t = 0, where the energy
density peak has its maximum, as shown in Fig. 4.2. Therefore we draw a conclusion
that the transformation from ‘two total turns’ to ‘no net turn’ is accompanied by the rogue
excitation.

Considering the choice of parameter values, spatially periodic spin breather studied
here is essentially an analogue of the well known Akhmediev breather. A remarkable fea-
ture of this breather solution is that, it grows from a uniform background and eventually
returns to the same through a rather complicated nonlinear evolution. Akhmediev breather
seen in their Fourier spectrum is an exact solution to the celebrated FPUT recurrence phe-
nomena [10]. In our classical HF model, what is narrated in Fig. 4.3 is a recurrence process.
Following the breather excitation, the spin chain recovers the initial state exactly as in the
beginning. Any trace of the breather excitation thus occurred in the spin chain is not visible
in the long run. We will revisit this issue in detail later in Chapter 5.

4.5.2 Closed belt and the linking number

In order to have a quantitative description one need to compute the number of turns present
in the belt. A closed belt description is more suitable for this analysis. In Fig. 4.4, we
show the time evolution of the closed belt for the rogue spin mode Ŝcb (4.25) through six
sequential instances. The initial and final state nearly reaches the background field as seen
in Fig. 4.4 (a) and (f) with ‘2’ complete turns. Interesting case is when t approaches zero —
the rogue event, accompanied with the energy peak as seen in Fig. 4.2. This ‘rogue event’
corresponds to Fig. 4.4 (c) and (d) where the total number of turns in the belt is surprisingly
zero. One may think of a transition stage between these two as shown in Fig. 4.4 (b) and
(e), wherein the belt passes through itself.

Alternatively, this can also be described in terms of linking number, Lk, of the red and
blue loops seen in Fig. 4.4. Linking number of two loops may be broadly thought of as
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Spin configuration at different instances from the time evolution of Ŝcb (4.25)
for n = 2 and m = 1. Owing to the spatial periodicity, spins at the boundary are identified,
making the lattice a circle, resulting in a closed belt made up of spin vectors. The loci of
the top (bottom) ends of the spin vectors are marked by the red (blue) lines. The belt has
‘2’ net rotations (or 4π radians) in figures (a) and (f). Whereas the net rotation in (c) and
(d), is zero. In other words, the blue and red loops are linked in (a) and (f) with a linking
number ‘2’, while in the intermediate phase, (c) and (d), they are un-linked. In the transition
process, the belt passes through itself as shown in (b) and (e). For detailed animation, see
the supplementary material: belt_trick2.avi .

the number of times the loops have to cut through each other to be completely separated.
Before and after the rogue event these loops are linked with, Lk = 2, whereas in the
intermediate phase they are un-linked, i.e., the loops can be separated without breaking
them. Gauss’ linking number [128] of two closed curvesR1(s) andR2(s′) is given by

Lk =
1

4π

∮
R1

∮
R2

T1(s)× T2(s′) · R1(s)−R2(s′)

|R1(s)−R2(s′)|3
ds ds′, (4.31)

 0

 2

-3 -2 -1  0  1  2  3

Lk

t

Figure 4.5: A plot of the linking number Lk between the red and blue loops shown in
Fig. 4.4, as a function of time. The behaviour of the total twist is identical, since Lk = Tw.
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where T1(s) and T2(s′) are the respective tangent vectors. Linking number Lk of two loops
is necessarily an integer, invariant under continuous deformation that do not tear the loops.
Hence it is a topological quantity [129]. One can think of two curvesR andR′ that closely
track each other, and form the boundaries of a closed ribbon such that,

R′(s) = R(s) + εU(s), (4.32)

where ε is the width of the ribbon, and U (s) is a local vector lying along the surface of the
ribbon perpendicular to the tangent vector at s, i.e., T (s) · U(s) = 0. But as ε → 0 both
the integrals in Lk (4.31) go along the same curve R, giving rise to a limiting integral Wr,
as written below [130].

Wr =
1

4π

∮
R

∮
R

T (s)× T (s′) · R(s)−R(s′)

|R(s)−R(s′)|3
ds ds′. (4.33)

The writheWr depends only on the orientation of the axis curve. It is not an invariant under
continuous deformation of the curve [129]. Along the ribbon, vector U rotates about T .
Summing all the local variations of U(s) gives a measure of the twist, explicitly written
as [130],

Tw =
1

4 π

∮
R

T (s) ·
(
U(s)× dU(s)

ds

)
ds. (4.34)

Twist Tw is not an invariant under deformation. The quantity dTw/ds measures the rotation
rate of secondary curve about the axis curve [130]. The non-topological properties twist
Tw, and writhe Wr, satisfy the Calugareanu theorem [131], also popular as White-Fuller
theorem [132, 133],

Lk = Tw +Wr . (4.35)

The axis of the belt (ribbon) considered here (Fig. 4.4) lies on a circle, resulting in Wr =

0 [129], and therefore Lk = Tw. In this case the twist Tw measures the amount by which
the boundaries are twisted about the center axis (middle line). If the ribbon passes through
itself (which is actually happening in our case), Lk changes by ±2, see for instance [134,
Sec. 4]. We compute the linking number numerically, using Gauss’ linking integral (4.31),
and presented in Fig. 4.5 as a function of time.

A sudden jump in Lk (or Tw) from 2 → 0 and 0 → 2 occurs when the red and blue
loops make a crossover. In other words, a portion of the belt passes through itself which
is not forbidden here, as the belt is imaginary, but spin are not. The spins live in their
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internal space, and their dynamics is quite smooth and continuous. Each spin vector differs
in its orientation from its neighbours only slightly, but their collective dynamics exhibit a
transition between two distinct phases, which is not obvious. We set other integer values
form and n, and observed the same qualitative behaviour. In general, the change in number
of turn is given by, n→ (n− 2m)→ n.

4.5.3 Contractible loop in SO(3) group manifold

At each lattice site, one may construct a triad of vectors (Fig. 2.1), with the spin vector itself
being one of them. The triad at the adjacent site may be obtained from the first through the
action of an SO(3) group element — more precisely, a rotation matrix. Since the spins at
the boundary are identified, the entire chain is thus described by a set of SO(3) elements,
that forms a closed loop in the parameter space of SO(3) group. Before we proceed further
with our analysis, we describe here the SO(3) group manifold and its properties.

Rotation matrix R ∈ SO(3), is a 3× 3 real matrix, such that R−1 = RT and detR = 1.
It has three independent parameters in its nine entries. In order to express the matrixR, one
choice is Euler angles [51, p. 150], but they are not quite useful for practical purposes. A
more convenient approach is the axis-angle representation in which a rotation is specified
by certain angle θ, about an axis n̂. Let J1, J2 and J3 be the traceless Hermitian matrices,
the generators of rotation, given by,

J1 =

0 0 0

0 0 −i
0 i 0

 , J2 =

 0 0 i

0 0 0

−i 0 0

 , and J3 =

0 −i 0

i 0 0

0 0 0

 . (4.36)

An arbitrary rotation about n̂ through an angle θ, can be expressed in the form [135, p. 32],

R(n̂, θ) = e−iθ(n̂·J), (4.37)

where n̂ = {n1, n2, n3} and J = {J1, J2, J3}. Note that, |n̂| = 1, hence only 2 parameters
are needed to specify n̂. For convenience, let J = −i(n̂ · J). From (4.36), it follows that,

J = −i(n̂ · J) =

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 , J 3 = −J . (4.38)

The matrix exponential exp{θJ } can be obtained by the series expansion [136, 137] as
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follows:
eθJ = I + θJ +

1

2!
θ2J 2 +

1

3!
θ3J 3 +

1

4!
θ4J 4 + · · ·

= I + θJ +
1

2!
θ2J 2 − 1

3!
θ3J − 1

4!
θ4J 2 + · · ·

= I + J
(
θ − 1

3!
θ3 + · · ·

)
+ J 2

( 1

2!
θ2 − 1

4!
θ4 + · · ·

)
= I + J

(
sin θ

)
+ J 2

(
1− cos θ

)
.

(4.39)

Finally, one can arrive at the well known expression for rotation matrix,

R(n̂, θ) = e−iθ(n̂·J) = I + sin θ (−in̂ · J) + (1− cos θ) (−in̂ · J)2. (4.40)

Each element of SO(3) group can be written in the form e−iθ(n̂·J), where θ is real.
Linear vector space n̂ · J is an algebra spanned by a basis J1, J2 and J3 endowed with a
commutation relation,

[Ji, Jj] = iεijkJk, (4.41)

where εijk is the Levi-Civita tensor [135]. Since this algebra generates the Lie group SO(3),
the vector space spanned by {J1, J2, J3} is called the so(3) Lie algebra. The relation (4.37)
can be seen as an exponential map which has vital role in the study of Lie algebra and Lie
groups. By definition [138, 137], the above Lie group and its Lie algebra are related by:

exp : so(3) −→ SO(3). (4.42)

The number of real parameters needed to specify a group element is its dimension, which
is 3 for SO(3) Lie group. Corresponding Lie algebra so(3) has a basis {J1, J2, J3} with
the same number of elements.

As mentioned above, R(n̂, θ) defines a rotation about the vector n̂ through an angle θ.
When θ goes beyond π, one can see from (4.40) that,

R(n̂, π + θ) = R(−n̂, π − θ). (4.43)

Thus, beyond π one can conveniently express the rotation through an angle π − θ about
an axis −n̂. This effectively fixes the range of θ as, 0 < θ < π. Another remarkable
conclusion follows from (4.40) by setting θ = π :

R(n̂, π) = R(−n̂, π). (4.44)
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Equations (4.43) and (4.44) can be more meaningful if we consider an open sphere of
radius π, as shown in Fig. 4.6. Every point in this sphere is represented by a position vector
#»P = θn̂, i.e., at a radial distance θ, in the direction n̂. Every point thus describe a rotation
through

#»P = θn̂ ≡ R(n̂, θ). See Fig. 4.6(a) for a pictorial representation. When θ = π, the
rotation is represented equally by two points due to the relation (4.44). These two points —
antipodal points (or pairs), resides at the boundary of the sphere but diametrically opposite
to each other. Since the purpose is to represent the rotation, antipodal points are hence
identified. This is shown in Fig. 4.6(b). An open sphere of radius π, with antipodal points
identified in this manner, is referred as the parameter space of SO(3) group. This sphere
is closed and bounded. In what follows, we will explain two kinds of closed loops in this
parameter space where one is contractible but the other is not [139, p. 96].

n̂

θ

R(n̂, θ)
n̂

R(n̂, π) = R(−n̂, π)

(a) (b)

Figure 4.6: Parameter space of SO(3). (a) An open sphere of radius π. Any arbitrary
rotation R(n̂, θ) can be indicated by a point

#»P(= θn̂) in this sphere at a radial distance θ,
in the direction n̂. Rotation beyond π can be represented usingR(n̂, π+θ) = R(−n̂, π−θ).
(b) Antipodal points (for e.g. red dots) are identified since they represent the same rotation.

For the sake of simplicity, consider a full rotation of an object or a triad in a plane.
Obviously, the the rotation is about a fixed vector n̂ which is the normal to the plane, and
the angle of rotation varies from 0 to 2π. One can visualize this rotation by marking the
points

#»P = θn̂, in the parameter space corresponding to each orientation the triad takes in
the due course. This is shown in Fig. 4.7. Initial orientation indicated by θ = 0, corresponds
to the center of the sphere, which is the identity element in the parameter space. As θ varies
to π/2, the point representing the rotation

#»P moves in the direction n̂, thereby making a
line as shown in (b). When θ = π, the point

#»P touches the boundary (at the top), which
is equally represented by a point on the opposite pole (at the bottom). These are antipodal
points marked in color red in the figure. Beyond π the curve continues from the antipodal
point at the bottom towards the center satisfying (4.43). After a complete rotation; θ = 2π,
which gives R(n̂, 2π) = R(n̂, 0) = I.
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Thus
#»P comes back to the center of the sphere, thereby making a closed loop in the

parameter space. It is to be noted that, the curve seen in Fig. 4.7(e) doesn’t have any
discontinuity at the antipodal points. Visually it may seem as broken when it touches the
red dots (antipodal points), but in the mathematical sense the curve is smooth and closed.
Although the description start with a rotation in a plane, the conclusion to be drawn from
this closed loop is more general.

A closed loop in the parameter space of SO(3) describes a rotation in Euclidean 3-space
keeping the initial and final orientation fixed. Any continuous deformation of this closed
loop are therefore valid. However, there exist a constraint that the corresponding antipodal
points (pairs) in the parameter space are always at the opposite poles. This constraint is
illustrated in Fig. 4.8. So, one cannot merge two antipodal points together. On the other
hand, antipodal points cannot be detached from the boundary as it will make the loop
discontinuous. Whatever be the deformation, the closed loop formed by one complete
rotation cannot be shrunk to a point [139, p. 96]. In short, one full rotation by 2π is
topologically non-trivial [140].

In the parameter space two complete rotations can be seen as two diametrical lines as
shown in Fig. 4.9(a). Antipodal points of the same kind are marked in same color. Note
that, each diametrical line connects two antipodal points which are of different kind. This
is in clear contrast to that of one rotation scenario. Therefore, the constraint illustrated
in Fig. 4.8 for one rotation, is not applicable here. Closed curve thus can be shrunk to
a point as shown in Fig. 4.9(b)–(e). In conclusion, a closed loop in the parameter space
corresponding to two complete rotation is contractible [139, p. 96]. I.e., a rotation through
4π is topologically trivial [140].

In the above discussion we set the initial orientation as identity I, which is why all the
curves passes through the center of the sphere. Such a description was only to make the
concept clear, and it is not a necessity. Rotation of an object (rotating frame) is analysed
with respect to a fixed frame of reference (non-rotating frame). After the rotation, if the
object comes back to the same orientation, it must draw a closed curve in the parameter
space of SO(3). Identity (center of the sphere) has no special role in this curve. If the
closed curve passes through antipodal points odd number of times, they cannot be shrunk
to a point [139, p. 97]. On the other hand, if it passes through antipodal points even number
of times, they can be shrunk to a point. A Lie group G is simply connected if every loop
can be continuously shrunk to a point in G [138, p. 15]. Therefore, SO(3) is not simply
connected. In fact SO(3) is doubly connected because it allows two distinct classes of
closed curves [139, p. 96].
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(a) θ = 0 (b) θ = π/2 (c) θ = π (d) θ = 3π/2 (e) θ = 2π

Figure 4.7: One complete rotation seen in the SO(3) group manifold. Rotation about an
axis n̂ through an angle θ is marked by a point

#»P = θn̂ in an open sphere of radius π, with
antipodal points identified. A complete rotation in a plane (θ : 0 → 2π) forms a closed
loop in the parameter space.

(a) (b)

Figure 4.8: Non contractible loop in the parameter space of SO(3). (a) Closed loop in the
form of a diametrical line corresponds to one complete rotation. Antipodal points (red dots)
are always pinned together so that they situate at the opposite poles. (b) Any deformation
in this closed loop can no way shrink it to a point. One rotation is non-trivial.

(a) (b) (c) (d) (e)

Figure 4.9: Contractible loop in the parameter space of SO(3). (a) Two complete rotations
form a closed loop in the parameter space, which can be seen as two diametrical lines
connecting antipodal points. Antipodal points of the same kind are marked in same color
— red and yellow. (b) - (e) Deformation in this closed loop can eventually shrink it to a
point. Two rotation is trivial.
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Due to the doubly connected nature of SO(3) group, a ‘single turn’ cannot be removed
(added) from (to) a belt, keeping the orientation of its ends fixed. At the same time, it
is possible to remove two complete turns from a belt through a continuous deformation
(keeping its end orientation fixed). This is often referred to as ‘belt trick’, ‘Dirac’s string
trick’, ‘plate trick’, etc [141, 140]. This is a simple demonstration using a belt or a ribbon
to explain that ‘two rotation’ is in fact ‘no rotation’.

Now coming back to the spin chain, we note that the spins at the boundary are identified.
Thus the entire chain is described by a set of SO(3) elements, that forms a closed loop in the
parameter space of SO(3). At the occurrence of rogue breather we observed a continuous
transition from ‘two total turns’ to ‘no net turn’. This can be viewed as the shrinking of
two diametrical lines in the parameter space (corresponds to 4π rotation) to a point (in fact
not a point, but a closed loop perfectly inside the sphere). Therefore we conclude that, the
rogue breather in classical Heisenberg ferromagnetic spin chain is a manifestation of the
belt trick, arising naturally in its dynamics. We are not aware of any other physical system,
or event that exhibit the belt trick through their natural dynamics.

4.6 Indicatrix curve and constant area

Since Ŝ is a unit vector it can be expressed in the form Ŝ = (sin θ cosφ, sin θ sinφ, cos θ)

where θ and φ are spherical polar co-ordinates. Each spin vector thus can be represented
by a point on the surface of a unit sphere. The entire spin chain at any particular instant of
time, traces a curve on the unit sphere which is called indicatrix. Due to spatial periodicity
of the spin field this indicatrix must be a closed curve. We show in Fig. 4.10, a sequence of
indicatrix curves taken from the time evolution of the rogue breather.

We below obtain the area of the surface enclosed by the closed indicatrix, denoted by
FI . This is clearly equal to the flux through this enclosed area due to a magnetic monopole
of unit strength situated at the origin. I.e., a magnetic field that is radially outward, and has
unit magnitude at the surface. This is given by

FI =

∫
da =

∫
area enlosed by indicatrix

B · # »

da =

∮
closed indicatrix

A · #»

dl. (4.45)

Here, we have invoked Stokes’ theorem for the closed loop traced by Ŝ on the surface of
the unit sphere, and A is the vector potential, such that∇×A = B. The magnetic field of
a monopole of unit strength, B = r̂/r2 can be derived from a vector potential [142, p. 140]
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A =
(±1− cos θ)

r sin θ
φ̂, (4.46)

with the ‘±’ applicable in upper and lower hemispheres, respectively, both nevertheless
leading to the same B. More precisely, there are two vector potentials AI and AII where
the former with ‘+1’ is singular only at θ = π and the later with ‘−1’ is singular at θ = 0.
A line element in spherical polar co-ordinate is given by

#»

dl = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂.
Substituting AI in (4.45), we get the integrand as (1 − cos θ)dφ. Angles θ and φ are
parametrized by x. Hence we express the area enclosed by the indicatrix curve as

FI =

∮
∂φ

∂x
(1− cos θ)dx. (4.47)

This integral is in fact also the total momentum of the spin chain, and is the generator for
spatial translations [35]. Since a uniform lateral shift of the spin mode does not change its
total energy, the total momentum commutes with the Hamiltonian

H = J

∫ (
∂Ŝ

∂x

)2

dx, (4.48)

and hence remains a constant. Withm = 1 and n = 2 for the rogue spin mode, using (4.25)
a direct calculation of the integral in (4.47) yields FI = 4π. In Fig. 4.10 we illustrate the
time evolution of the indicatrix curve for the rogue breather mode. The curve intersects
itself once. With the intersection preserved, the area enclosed by the indicatrix on the
surface of the unit sphere remains constant.

(a) (b) (c) (d) (e) (f)

Figure 4.10: Snapshots of the closed loop on the unit sphere traced by the spin vector –
the indicatrix, for the breather spin mode (m = 1, n = 2). The indicatrix intersects itself
once, which is preserved throughout the time evolution. The curve is symmetric about the
great circle passing through the intersection. Keeping in mind the direction of the loop,
total area covered by the loop on the surface of the sphere remains a constant (4π). For
detailed animation, see the supplementary material: indicatrix.avi .
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4.7 Spinor association

We have already shown that the HF spin chain demonstrates the ‘belt trick’ during the
breather excitation. Basic fact behind the belt trick is the contractibility of loops in the pa-
rameter space of SO(3), as illustrated in Fig. 4.9. However, an explicit connection between
the group manifold and the spin dynamics was not presented there. In this section, we
will examine the breather excitation in the spin chain by visualizing it in the SU(2) group
manifold. The Lie group SU(2) comes into the picture for two reasons:

1. There exist a group homomorphism between SU(2) and SO(3). Therefore, the belt
trick can also be seen in SU(2).

2. The Lax pair (2.14) for the NLSE has a fundamental solution Ψ, which is an ele-
ment of SU(2). Gauge equivalence implies that, for each spin configuration Ŝ, there
exist a solution ψ to the NLSE. This ψ and the fundamental solution Ψ are always
correlated. Therefore the belt trick seen in the spin breather must be present in Ψ.

4.7.1 SU(2) group and angle doubling

Group SU(2) is the set of 2 × 2 complex matrices U , such that U † = U−1 and detU = 1.
It can be conveniently written as,

U =

(
r −s
s r

)
, |r|2 + |s|2 = 1, (4.49)

where r and s are arbitrary complex numbers [137]. With the additional constraint on the
determinant, r and s can be specified by three real numbers. Thus the dimension of SU(2)

group is three. Being a matrix Lie group, SU(2) can be represented by the exponential
map [143]:

exp : su(2) −→ SU(2), (4.50)

where su(2) is the Lie algebra spanned by Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0

0 −1

)
. (4.51)

Any element U ∈ SU(2) can be written as

U = e−i(θ/2)(n̂·~σ), (4.52)
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where n̂ = {n1, n2, n3}, σ = {σ1, σ2, σ3} and θ is a real number. To represent U , three
parameters are needed — one for θ, and two for n̂, since |n̂| = 1. One can compute the
matrix exponential to arrive at a more convenient expression [137, 143]. LetK = −i(n̂·~σ).
It follows that,

K = −i(n̂ · ~σ) =

(
−in3 −n2 − in1

n2 − in1 in3

)
, K2 = −I. (4.53)

Series expansion gives,

e(θ/2)K = I + (θ/2)K +
1

2!
(θ/2)2K2 +

1

3!
(θ/2)3K3 +

1

4!
(θ/2)4K4 + · · ·

= I + (θ/2)K − 1

2!
(θ/2)2I− 1

3!
(θ/2)3K +

1

4!
(θ/2)4I− · · ·

= I
(
1− 1

2!
(θ/2)2 +

1

4!
(θ/2)4 − · · ·

)
+K

(
(θ/2)− 1

3!
(θ/2)3 + · · ·

)
= I cos(θ/2) +K sin(θ/2).

(4.54)

Finally, the general expression for SU(2) matrix [136, p. 100] is written as,

U(n̂, θ) = e−i(θ/2)(n̂·~σ) = I cos(θ/2)− i(n̂ · ~σ) sin(θ/2). (4.55)

Comparing (4.55) with (4.40), one can see that U(n̂, θ) is generated by the following set of
2× 2 matrices,

K1 =
σ1

2
, K2 =

σ2

2
, and K3 =

σ3

2
, (4.56)

for which, the commutation relations can be found to be,

[Ki, Kj] = iεijkKk. (4.57)

Comparing this with (4.41), one can see that the commutation relations for generators of
SU(2) is identical to that of SO(3). Further, it is to be noted that both the generators (4.36)
and (4.56) are traceless Hermitian matrices. In brief, su(2) and so(3) are isomorphic Lie
algebras [138, p. 116].

At this point, one contrast between SU(2) and SO(3) can be made. As the rotation
angle varies through 4π, it can be seen from (4.55) that,

U(n̂, θ + 2π) = −U(n̂, θ), and U(n̂, θ + 4π) = U(n̂, θ). (4.58)
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Thus, the rotation period for SU(2) is 4π, unlike 2π for SO(3). A 2π rotation never brings
back the element towards the initial state, instead it changes sign [144].

There exists a homomorphism between SU(2) and SO(3), which is a two-to-one map-
ping,

Φ : SU(2)
2:1−→ SO(3), Φ(U) = R, (4.59)

where U ∈ SU(2) and R ∈ SO(3). We omit the details of the mapping here. This ho-
momorphism is often called ‘Double cover’, since two distinct elements of SU(2) is being
mapped to an element of SO(3). In other words, Φ(U) = Φ(−U) = R. This is why R
is unchanged by a rotation θ = 2π. A complete rotation forms a closed curve in SO(3)

but not in SU(2) because the curve starts from U and ends in −U . Two complete rotation
can form a closed curve in SU(2). Moreover, SU(2) is simply connected with fundamental
group {1}, which implies that every closed curves are contractible. On the other hand, for
SO(3), the fundamental group is {1,−1}, which is the reason why it is doubly connected
with two distinct types of closed curves [138].

For a given element of SU(2), the parameters θ and n̂ can be found by comparing (4.49)
and (4.55). We write the required relations explicitly,

cos(θ/2) = Re(r),

n1 sin(θ/2) = −Im(s),

n2 sin(θ/2) = Re(s),

n3 sin(θ/2) = −Im(r).

(4.60)

Although θ varies from 0 to 4π in a period, it is possible to represent the matrix U(n̂, θ)

within a range 0 < θ < π. Using (4.55), one can find the appropriate representation of U
which falls in ranges 0→ π, π → 2π, 2π → 3π and 3π → 4π as follows:

0→ π; U(n̂, θ),

π → 2π; U(n̂, π + θ) = −U(−n̂, π − θ),

2π → 3π; U(n̂, 2π + θ) = −U(n̂, θ),

3π → 4π; U(n̂, 3π + θ) = U(−n̂, π − θ).

(4.61)

4.7.2 Belt trick seen in SU(2) group manifold

A matrix element of SO(3) rotates a vector in R3. Likewise, an element of SU(2) rotates a
spinor — vector in a 2-d complex vector space [145, 144]. We will show that the rotation
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of the spinor is closely related with the dynamics of the spin chain. Without explicitly
expressing the spinor, we will give the SU(2) elements responsible for the spinor evolution.

Every spin configuration is related to a solution to the NLSE via gauge equivalence. The
Lax pair (2.14) for the NLSE has a fundamental solution Ψ, which is an element of SU(2).
This enables us to think of a set {ψ,Ψ, Ŝ}. For a complete picture, see the Table 4.1,
which summarizes various solutions presented in this work. Thus we argue that, there
exist a close relationship between the dynamics of classical HF spin chain and the rotation
matrix in SU(2). The belt trick seen in the spin breather must be present in SU(2), since
S = limλ→0 Ψ†σ3Ψ. In this section, we will examine these SU(2) elements by finding
their axis-angle parametrization. Evolution of the closed curve in the group manifold will
also be discussed in detail.

Table 4.1: The relationship between NLSE, HF spin chain and their solutions.

NLSE Lax pair HF spin chain

iψt + ψxx + 2|ψ|2ψ = 0 Ψx = UΨ, Ψt = VΨ Ŝt = Ŝ× Ŝxx, Ŝ2 = 1

ψ ∈ C Ψ ∈ SU(2) S = limλ→0 Ψ†σ3Ψ ∈ su(2)

ψc (seed) Eq. (4.6) Ψc Eq. (4.8) Sc Eq. (4.11)

ψcb (breather) Eq. (4.17) Ψcb Eq. (4.15) Scb Eq. (4.19)

λ0 = ia
κ0 > a

ψAB (AB) Eq. (3.23) limλ→0 Ψcb Eq. (4.64) Scb (simplified) (4.25) (4.28)

4.7.2.1 Seed spin and Ψc

Since everything is compiled together in Table 4.1, without further explanation we move
on to the fundamental solution associated with the seed spin. The seed spin is explicitly
obtained in section 4.3.2 using the expression, Sc = limλ→0 Ψc

†σ3Ψc. Out of all λ-family
of solutions, the one with λ→ 0 is entering in the spin configuration. Therefore, we argue
that the features seen in the spin chain are present in Ψc in the limit λ→ 0. It can be written
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as (details are provided in Appendix B),

lim
λ→0

Ψc(x, t, λ) =

(
cos(κ0x− π

4
) ei(κ

2
0t−

π
4

) i sin(κ0x− π
4
) ei(κ

2
0t−

π
4

)

i sin(κ0x− π
4
) e−i(κ

2
0t−

π
4

) cos(κ0x− π
4
) e−i(κ

2
0t−

π
4

)

)

=

(
ei(κ

2
0t−

π
4

) 0

0 e−i(κ
2
0t−

π
4

)

)(
cos(κ0x− π

4
) i sin(κ0x− π

4
)

i sin(κ0x− π
4
) cos(κ0x− π

4
)

)
= eiσ3(κ20t−

π
4

) · eiσ1(κ0x−π4 )

= eiσ3(κ20t−
π
4

) · eiσ1(Θ/2),

(4.62)

with Θ/2 + π
4

= κox = nπx
L

. We have used the matrix exponential relation (4.55) for
writing the matrix in the final form. In this form, it appears to be a combination of rotations
about σ3 and σ1 axis which are respectively the ẑ and x̂ directions in R3. Using the gauge
equivalence, the spin field in the matrix form (4.10) can be calculated as,

Sc(x, t) = e−iσ1Θ/2e−iσ3(κ20t−
π
4

) σ3 e
iσ3(κ20t−

π
4

)eiσ1Θ/2

= e−iσ1Θ/2 σ3 e
iσ1Θ/2

= cos(2κ0x)σ2 + sin(2κ0x)σ3 = Sc(x, 0),

(4.63)

the seed solution, as given in (4.11).

Further, it can be seen from (4.62) that at any instant of time, say t = π/4κ2
0 for

simplicity, the rotation is about x̂ (or σ1 ) through an angle Θ. For n = 1, angle Θ varies
from 0 to 2π since 0 < x < L. Recall the angle doubling scenario explained in the
previous subsection. A rotation of 2π form a diametrical line along x̂ in the SO(3) group
manifold — in fact a closed loop, signifying a complete rotation in R3. However, the SU(2)

matrix, Ψc (4.62) simply changes sign and never form a closed loop in its manifold. Angle
doubling can be seen from the argument of trigonometric functions appearing in (4.62) and
(4.63). For n = 2, therefore 0 ≤ Θ < 4π, corresponds to two overlapping diametrical
lines, indicating two complete rotations (for Sc). Hence, with 4π rotation, Ψc (4.62) comes
back to the initial form, thereby making a closed loop in SU(2).

Notice the time dependence in (4.62), we infer that there is a rotation about ẑ (or σ3 )
in the time evolution, with period 2π/κ2

0(= 2L2/π). During this time period the diametric
line completes one full global rotation.
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4.7.2.2 Spin breather and Ψcb

From the seed solution, we are now moving towards the breather mode. Although we have
obtained a general expression for breather, the current study of belt trick is based on a
spatially periodic case with the choice of λ0R = 0 and κ0 > λ0I . The corresponding spin
breather (a reduced expression) is given in (4.25), along with variables defined in (4.28).
This is essentially a counterpart of the Akhmediev breather in HF spin chain. Spin breather
is explicitly obtained in section 4.4.3 by the relation, Scb = limλ→0 Ψcb

†σ3Ψcb. In order
to examine the belt trick, the matrix Ψcb has to be expressed for λ = 0, λ0R = 0, and
κ0 > λ0I . We rewrite Ψcb (4.15) below in the required limit:

lim
λ→0

Ψcb = lim
λ→0

1√
d1

P1 Ψc , (4.64)

where P1 is the Darboux matrix given in (4.13), and d1 = |P1|. Matrix Ψc is already given
in the required limit in (4.62). For the Darboux matrix P1, we have computed the limit
λ0R = 0 and λ = 0, in section B.31 of Appendix B. Thus we write,

lim
λ→0

1√
d1

P1(x, t, λ, λ0) =
1

∆

(
−iγ −e2iκ20t(β + iα)

e−2iκ20t(β − iα) iγ

)
, (4.65)

with α, β, γ and ∆ as in (4.28). Since α2 + β2 + γ2 = ∆2, we may define variables A and
B in the following form,

sinA cosB =
β

∆
, sinA sinB =

α

∆
, cosA =

γ

∆
, (4.66)

so that (4.65) may be rewritten as,

lim
λ→0

1√
d1

P1 =

(
−i cosA − sinAei(B+2κ20t)

sinAe−i(B+2κ20t) i cosA

)
. (4.67)

Since it is an SU(2) element, one can visualize this as a rotation (4.55). Corresponding axis
n̂ = {n1, n2, n3} and angle θ can be obtained from (4.60). Hence, right hand side of (4.67)
is a rotation about the axis n̂(x, t) = {sinA sin(B + 2κ2

0t), sinA cos(B + 2κ2
0t), cosA},

but peculiarly through a constant angle π. However, the direction n̂(x, t) is obscured by
the complicated form of the variables in (4.28).

In what follows, we will visualize the belt trick in group manifold. Evolution of the
spin chain is previously shown in Fig. 4.3. We will show next, how does the corresponding
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SU(2) elements (4.64) evolve in time. We first obtained the axis angle parametrization
(n̂, θ) using (4.60). The parameter space, is an open sphere of radius π with antipodal
points identified. Therefore the range of θ lies in between 0 and π as per the relations given
in (4.61). In the case of SU(2) we will follow a formalism where U and −U are indicated
by the same point inside the sphere. This will essentially become a 2 → 1 mapping from
SU(2) to SO(3). Thus a single diametrical line seen in this parameter space does not mean
a closed curve in SU(2), because the curve merely connects the identity element I with−I .
Note that both of them mapped to the same element in SO(3) which is the identity in that
group — hence the curve represent a complete rotation (for the spin vector).

We give a detailed plot of the group element in Fig. 4.11 as a series of events taken
from the time evolution. For large |t| values, rogue breather dynamics approaches the
seed spin configuration. It is obvious that the seed spin with n = 2, makes two overlapping
diametrical lines in the group manifold. This is a closed loop, both in SU(2) and SO(3). As
the system evolves towards the rogue event, these two diametrical lines seen in Fig. 4.11(a)
starts to separate and deform continuously. Antipodal pairs are marked in the same color.
It is clear from the plots that any motion of a particular antipodal point (say, red) over
the surface, must be accompanied with a motion of the corresponding point (red) on the
other side. In the due course (Fig. 4.11(a)–(f) ), the size of one line keep decreasing,
vanishing eventually, permitting the other to connect into a closed loop. This closed loop
seen in Fig. 4.11(f)–(j), resides entirely within the sphere without touching the surface.
In principle, this closed loop can be shrunk to a point through continuous deformation
— thus it is topologically equivalent to a point. However, a single point in the manifold
corresponds to zero energy for the 1-d isotropic spin field. Since our classical HF spin chain
is a conservative system, such ‘shrinking’ will not occur in this dynamics. If dissipation
effects are also incorporated, one can expect a ‘shrinking’ from the closed loop eventually
reducing to a point. Further stages of the rogue breather evolution in Fig. 4.11(h)–(o),
shows its symmetric nature in time, as is expected. At the end, it results in two overlapping
diametrical lines where it started from.

On a technical note we want to remark that, all the curves seen in the Fig. 4.11 start
with the identity — the center of the sphere. In general this is not guaranteed in (4.64). As
discussed above, the matrices given in (4.67) and (4.62) have complicated evolution, even
in time. To make the analysis more convenient we deliberately fixed the first element at
the center of the sphere. However this is no way alters the conclusions discussed in this
work. For example, consider an arbitrary curve parametrized by its arc length r(s), where
r(0) 6= #»

0 . One can define r′(s) = r(s) − r(0), such that r′(s) is identical to r(s), but
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starts from the origin. Likewise, the matrix U ∈ SU(2) at a particular instant of time t,
be parametrized by x. As x varies from 0 to L, matrix U(x) draws a closed curve in the
parameter space. In general U(x = 0) 6= I, hence the curve does not start from the center.
In this work. this issue is bypassed by defining U ′(x) = U(0)−1U(x). What is seen in the
Fig. 4.11 is thus U ′(x).

The parameter space shown in Fig. 4.11 does not distinguish an element U from −U
(refer (4.61) for details). Hence it is essentially a group homomorphism (4.59). One can ex-
plicitly do this by constructing an SO(3) matrix right from the SU(2) element [80, p. 373].
Then the axis angle parametrization for this SO(3) matrix can be easily obtained from
(4.40). We observed that the evolution of the closed curve in this procedure is identical to
that of Fig. 4.11, as is expected.

Breathers are not possible with n = 1. However, we would like to point out one
topological aspect it has in contrast with n = 2. In principle, two diametrical lines can
be shrunk to a point. In the case of a single diametrical line (n = 1), the end points are
always identified. As one of them moves along the surface, so does the other, keeping them
always at opposite ends. Hence they will never be able to join together to form a closed
loop that resides perfectly within the sphere. Therefore, a diametrical line in the group
manifold cannot be shrunk to a point. In other words 2π rotations are topologically non-
trivial, while 4π rotations are trivial. This is indeed the gist of the belt trick. Topologically,
a breather mode with n = 2 or any other with an ‘even’ twist are thus equivalent. This is
distinct from those breather modes, with n as odd number. Thus depending on the nature of
their total twist, Tw — ‘odd’ or ‘even’, entire collection of breather modes can be grouped
into two distinct classes. Our study is based on an integrable system, where the energy is
conserved. But in a modified system [32] that includes dissipation and other such factors,
a spin configuration with higher twist Tw, can be transformed to a configuration with twist
Tw − 2, and eventually to a configuration with lowest possible twist in its class — either
‘0’ or ‘1’, through breather like excitations.

4.8 Energy bounds and topological sectors

We have shown that spin field with spatial periodicity fall into two distinct classes, as a
consequence of the fact that SO(3) group manifold is doubly connected. In addition, it can
be shown that their energy is bounded from below. It is possible to define a mapping from
1-d spin chain into a space curve parametrized by its arc length. Here, each spin vector,
which is of unit magnitude is identified with the unit tangent of the curve. More precisely,

79



if R(x) is the position vector of space curve, and x being its arc length, then

dR(x)

dx
≡ Ŝ(x). (4.68)

The unit moduli of Ŝ(x) implies that R(x) is non-stretching. A spin chain can have a total
spin,

Stot =

∮
Ŝ dx, (4.69)

which is a constant of the time evolution. This is also a consequence of the global rotation
symmetry of the Heisenberg Hamiltonian. Spatially periodic spin configurations that are
discussed in this chapter, in fact correspond to Stot = 0. This additional condition, Stot = 0,
thus corresponds to a closed curve in 3 dimension (

∮
dR = 0). In the case of the indicatrix

— the curve traced by Ŝ on the unit sphere, spatial periodicity of the spin field alone can
provide a closed curve. In addition, a zero total spin gives a closed indicatrix that cannot
be confined to any single hemisphere [146], no matter which way one looks at it (see for
instance Fig. 4.10).

The curve R(x) with tangent vector identification ê1 = Ŝ has curvature κ = |ê1x| = |∂Ŝ∂x |.
The total curvature of any closed curve must be greater that 2π. This is a fact well know in
differential geometry as Fenchel’s theorem [147, 148], which may be written as,∮

κdx ≥ 2π. (4.70)

Using Cauchy-Schwarz inequality [146], we have

L

∮
κ2dx ≥

(∮
κdx

)2

, (4.71)

Since κ = |∂Ŝ
∂x
|, the energy density turn out to be κ2 from (4.3). Substituting (4.70) in

(4.71), one can arrive at the energy lower bound for the spin configuration [149]

ETotal ≥ 4π2/L. (4.72)

However, the energy does not have an upper bound, since the spin chain can take any
integer value for n.

The rogue breather dynamics we have studied in this chapter is an exact solution for HF
model given in (4.2), which is an integrale system free of any dissipation. In this dynamics,
we show that the spin configuration with total twist Tw can be contiuously transformed to
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one with twist Tw−2 which is a short lived intermediate phase. Later, the spin configuration
goes back to its initial configuration where it has started with. If dissipation effects, such as
Gilbert damping [150] are to be included, system will not revert to its initial configuration.
Breather excitation can thus transform any spin configuration with twist Tw continuously to
one with a total twist of Tw−2, and eventually to a twist of either ‘0’ or ‘1’. Thus we obtain
a more general lower bound for the total energy of the spin chain with periodic boundary
condition, determined by its twist:

ETotal ≥

{
0 for ‘even’ twist,

4π2/L for ‘odd’ twist.
(4.73)

Hence, a spin configuration with given Ŝtot, fall into two distinct topological classes, due
to the fact that the fundamental group of SO(3) is Z2. Further, HF model admits soliton
solution in the form of breather modes, as a mediator shifting the total twist of the chain
by ‘2’.

4.9 Conclusion

We have studied the breather excitation in classical HF spin chain. An exact analytical
expression for the spin breather is presented. Of particular interest for our studies, we
focused on a spatially periodic case which is essentially an analogue of Akhmediev breather
in the HF model.

It is shown that the spin chain demonstrates the ‘belt-trick’ during the breather ex-
citation. The belt trick, also known as ‘Dirac string trick’ is often used to illustrate the
triviality of 4π rotation. A finite spin chain with two complete turns between its ends may
be continuously transformed to a chain wherein net rotation is surprisingly zero. This pe-
culiar topological feature, even though theoretically well understood, has so far not been
witnessed in a physical model to the best of our knowledge. In view of the recurrence phe-
nomena seen in various integrable systems, we find that after the belt trick demonstration
the initial configuration of the spin chain is exactly recovered.

Evolution of the spin chain has also been visualized in the group manifold. Close
relation between the spin field and the SU(2) element, arising naturally in the framework
of soliton theory, is explored in detail.

We have also pointed out that the total energy of the spin chain has a lower bound,
depending inversely on the size of the chain. If dissipation effects were to be regarded,
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the configuration space is broadly reduced to two topological sectors with distinct energy
lower bounds, determined by their total twist — ‘odd’ or ‘even’.
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Chapter 5

Recurrence process in the
Heisenberg ferromagnetic spin chain

5.1 Introduction

HF spin chain demonstrates the ‘belt trick’ during a breather excitation. This peculiar geo-
metrical feature has been discussed in Chapter 4 wherein the background spin configuration
is a static field. In this chapter one more spin breather solution is constructed which shows
the ‘belt trick’ behaviour. This is distinct from the former in the sense that its background
field is time dependent. The new spin breather presented here can be thought of as the
tangent vector of the knotted space curve discussed in Chapter 3. Both the breather modes
studied in this thesis (Chapter 4 and 5) are found to exhibit the ‘belt trick behaviour’, as if
this peculiar feature is a general characteristics of the NLSE breather solution.

We start with a plane wave solution ψh = κ0e
i
√

2κ0x, to obtain a breather as explained
in Chapter 3. Spin configuration associated with this breather solution is constructed ex-
plicitly using gauge equivalence. Spatially periodic spin breather is studied in detail as a
special case. An additional global rotation is observed in the background spin chain due to
the breather excitation. Although the spin chain goes back to its initial configuration, this
additional rotations clearly distinguish the initial and final state of the system.

In the case of Akhmediev breather, it is known that the initial and final phase of the
complex field has a shift. The significance of the additional global rotation in the spin chain
(analogous to the ‘phase shift’) in the context of FPUT recurrence is discussed. However,
this scenario is absent in the spin breather studied in Chapter 4. A qualitative distinction of
the two spin breathers in this regard is pointed out.
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5.2 Seed solution: a rotating spin chain

For each solution ψ to the NLSE, there is one auxiliary matrix function Ψ as a solu-
tion to the corresponding Lax pair. Spin configuration associated with ψ is obtainable
via gauge equivalence, S = limλ→0 Ψ†σ3Ψ, which then can be expressed in vector form
Ŝ ≡ (S1, S2, S3) as explained in Sec. 2.3. This is the procedure followed in Chapter 4,
wherein the background spin field (4.11) is a static field (time independent) which is asso-
ciated to the seed solution ψc = κ0 e

2iκ20t.

Here in this chapter, we begins with a seed solution,

ψh = κ0e
i
√

2κ0x (5.1)

where κ0 is a real constant. Suffix h denotes the associated space curve — helix (Fig. 1.3 (c)).
One can construct the spin field associated with ψh, using the expression,

Sh = lim
λ→0

Ψh
†σ3Ψh (5.2)

where Ψh is given in (3.9). Following a straightforward calculation, the explicit expression
for the seed spin may be written as,

Ŝh =

√
2

3

(
1√
2

î + cos θ ĵ + sin θ k̂

)
, (5.3)

where θ =
√

6κ0(x−
√

2κ0t). This spin configuration has a uniform rotation about the x-
axis with time period T0 = π/(

√
3κ2

0), and a spatial period L1 =
√

2π/(
√

3κ0) such that
Ŝh(x, t) = Ŝh(x + nL1, t), for an integer n. The spin field Ŝh is shown in Fig. 5.1 taking
the lattice sites along x- axis, where the rotation of the chain as a whole about the axis is
implied. Hence this spin field is a dynamical field unlike the previously discussed static
field seen in Fig. 4.1 . Energy density (4.3) can be found to be, E0 = |Ŝh,x|2 = 4|ψh|2 =

4κ2
0.

5.3 Spin breather modes over the rotating spin chain

We are investigating the breather excitation over the background spin field Ŝh (5.3). Breather
solution over the plane wave ψh using DT technique has already been discussed in Chap-
ter 3. The breather solution ψ1 (3.15), is explicitly obtained for which the associated space
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curve in knotted. Here we extend the result towards HF spin chain using the relation,

S1 = lim
λ→0

Ψ1
†σ3Ψ1 (5.4)

where Ψ1 (3.13) is the solution to the Lax pair corresponding to the breather ψ1 (3.15).

Calculation of the spin configuration Ŝ1 is straightforward. Explicit expression for the
spin breather is obtained as,

Ŝ1(x, t) =
λ2

0R − λ2
0I

|λ0|2
Ŝh +

[
− 2λ2

0Iξ

|λ0|2χ2

(
− (
√

2η + ξ)√
3

)
+

2λ0Iλ0R

|λ0|2χ

(
−
√

2√
3
ζ

)]̂
i

+

[
− 2λ2

0Iξ

|λ0|2χ2

(
cos θ

(η −
√

2ξ)√
3

− ζ sin θ

)
+

2λ0Iλ0R

|λ0|2χ

(
ζ√
3

cos θ + η sin θ

)]̂
j

+

[
− 2λ2

0Iξ

|λ0|2χ2

(
sin θ

(η −
√

2ξ)√
3

+ ζ cos θ

)
+

2λ0Iλ0R

|λ0|2χ

(
ζ√
3

sin θ − η cos θ

)]
k̂, (5.5)

where, Ŝh is the background spin field, and λ0(= λ0R + iλ0I) is the scattering parameter
in the language of IST. Functions ζ, η, ξ and χ are defined below (3.11), and θ is defined
below (5.3).

Energy density of the spin breather is E1 = |Ŝ1,x|2 = 4|ψ1|2, owing to the gauge
equivalence [19]. Therefore breather profile shown in Fig. 3.4 will be identical to the
energy profile in x− t plane, upto a scaling. It is to be noted that, the spin breather Ŝ1 (5.5)
is cumbersome to analyse in its entire generality. But one can still have a spatially periodic,
temporally periodic or even a rogue soliton by suitably choosing the concerned parameters
as described in Fig. 3.4.

Spin breather Ŝ1 is shown in Fig. 5.2 with nine frames in sequence taken from its time
evolution. Uniform rotation about the lattice axis present in the seed spin can be seen as
a global rotation. This is not necessary for the analysis and can be avoided in the plots
for the sake of simplicity. For the particular choice of parameter (in general case), there is
no spatial periodicity in the spin field. Therefore a spin chain of arbitrary length is taken
which initially carry ‘3’ turns between its boundaries. Same number of turn can be seen in
the last frame as well. However, in the intermediate stage shown in Fig. 5.2 (e), the net turn
is found to be ‘1’. Dynamics of each individual spin vector is smooth and continuous. But
their collective behaviour shows a singular shift when considering the net turns in the spin
chain, which in this case ‘3’ to ‘1’ and again to ‘3’. This feature is treated as the ‘belt trick
behaviour’ of the spin breather mode. Corresponding indicatrix curve is shown in Fig. 5.3.
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Figure 5.1: Spatially periodic dynamical spin field, Ŝh (5.3) is shown with lattice sites
lined up along the x - axis. Spin chain as a whole is rotating about the lattice axis with a
time period T0.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 5.2: Spin breather Ŝ1 (5.5) is shown at nine instances in its evolution for κ0 = 0.5,
λ0 = 0 + 0.5. Loci of top of the spin vector is marked in color red, and that of bottom
is marked in blue. (a) and (i) are shown to have ‘3’ turns (windings) in the spin chain
between its boundaries. Whereas in (e) the net turn is only ‘1’. This singular shift in terms
of net turns — ‘3’ to ‘1’, is the ‘belt trick behaviour’ in the spin chain. Spatial periodicity
is absent for this particular choice of parameter, therefore a spin chain of arbitrary length
containing ‘3’ turn is shown for the purpose of illustration. Uniform rotation about the
lattice axis present in the background spin chain is canceled out for the ease of analysis.
For detailed animation, see the supplementary material: belt_trick3.avi .
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(a) (b) (c) (d) (e) (f)

Figure 5.3: Indicatrix curve — curve spanned by Ŝ1 on the surface of a unit sphere.

Spin field dynamics can also be seen in group manifold — an open sphere of radius π
with antipodal points identified (for more details refer Sec. 4.7 and Fig. 4.11). The SU(2)

connection arises from the fundamental solution to the Lax pair. For this particular breather
solution one can see that the fundamental solution Ψh (3.9) and Ψ1 (3.13) have a spatial
period 2

√
2π/κ0 which does not commensurate with the spatial period L1 =

√
2π/(
√

3κ0)

of the seed spin Ŝh (5.3). Therefore even for the seed spin Ŝh, the corresponding curve in
the group manifold does not form a closed curve. This is shown in Fig. 5.4 (a). This open
curve corresponds to the seed spin shown in Fig. 5.1 which carry ‘3’ rotations. We note
that, a matrix solution Ψ and eiΘσ3Ψ corresponds to the same spin field as shown below:

S = lim
λ→0

(eiΘσ3Ψ)
†
σ3(eiΘσ3Ψ) = lim

λ→0
Ψ†e−iΘσ3σ3e

iΘσ3Ψ = lim
λ→0

Ψ†σ3Ψ, (5.6)

where Θ is an arbitrary function of x and t. The periodicity in Θ does not reflect in the spin
field. The matrix solution Ψh (3.9) is in fact in the form eiΘσ3Ψ, where the matrix eiΘσ3

has period 2
√

2π/κ0 that is incommensurate with the spatial period of seed spin.

As an alternative, one can analyse the rotation by constructing a triad, say Serret-Frenet
triad through an identification ê1 = Ŝ, as discussed in Sec. 2.4. The rotation of the triad
generates corresponding SO(3) group elements. An arbitrary fixed frame {̂i, ĵ, k̂} and the
rotated frame {̂i′, ĵ′, k̂′} relates through nine direction cosines [51, p. 137]. These direction
cosines are elements of the required rotation matrix. Then the axis angle representations of
the rotation matrix is obtained via (4.40). Following the formalism detailed in Fig. 4.6, one
get a closed curve in the parameter space of SO(3) as shown in Fig. 5.4 (b). There are ‘3’
diametrical lines stacked together each indicating one a 2π rotation.
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(a) Ψh ∈ SU(2) (b) Serret-Frenet triad

Figure 5.4: Spin field Ŝh in the group manifold. (a) Drawn from corresponding SU(2) el-
ement, which is not closed due to the non matching periods. (b) Invoking an identification,
ê1 = Ŝ, Serret-Frenet triad is constructed and the corresponding rotation group is drawn.

5.4 Spatially periodic spin breather

One can arrive at “Akhmediev type breather” for the spin chain that reveals its spatial
periodicity for a choice of

λ0R = −κ0/
√

2, and κ2
0 > λ2

0I . (5.7)

This corresponds to the Galilean transformed Akhmediev breather ψGAB (3.22), discussed
previously in Sec. 3.4. We rewrite below the expression for “Akhmediev type breather”:

ψGAB = −κ0 e
i
√

2κ0(x−x0) cosh(rt− 2iφ)− cosφ cos(q(x− vt))
cosh(rt)− cosφ cos(q(x− vt))

, (5.8)

where, q = 2κ0 sin(φ), r = 2κ2
0 sin(2φ), v = 2

√
2κ0, φ = cos−1(λ0I/κ0) and x0 = π/q.

Detailed steps are provided in section A.3 of Appendix A. It is clear that the above breather
is localized in t and periodic in x.

As pointed out earlier, the spatial periodicity in the seed spin is, L1 =
√

2π/(
√

3κ0).
The breather solution has a spatial periodicity, L2 = 2π/q = π/

√
κ2

0 − λ2
0I . Another

spatial periodicity due to the background field ei
√

2κ0x does not reflect in the spin breather.
So we have two kinds of periodicity,

L1 =
√

2π/(
√

3κ0), and L2 = π/
√
κ2

0 − λ2
0I . (5.9)

In order to have a period matching in a finite spin chain of length L, we choose two integers
n and m such that,

L = nL1 = mL2. (5.10)
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For a given value of κ0, parameter λ0I may be written as

λ0I = κ0

√
1− 3m2

2n2
. (5.11)

A spatially periodic spin breather for m = 2, n = 5 is shown in Fig. 5.5. Equally spaced
excitations can be seen in Fig. 5.5 (e) whereas these excitations eventually vanishes as
|t| → ∞, which then recreate the background field as shown in (a) and (i). One may
compare this situation with that of breather profile (ψGAB) shown in Fig. 3.4 (b), where
much before and after the breather excitation (|t| → ∞) the profile seems quite similar
— steady and smooth with no trace of ‘breathing event’ occurred in-between. This is
not always true; some trace is left in the complex field ψ, not in its magnitude but in its
phase [75]. We will explain this in detail a little later.

A close examination of Fig. 5.5 (a) and (i) clearly reveals an extra global rotation taken
place in between initial and final stages of the spin chain that otherwise seem identical. The
constant rotation in time, present in the background spin Ŝh has been cancelled out for the
sake of analysis. Hence, we draw a conclusion that the additional rotation seen in the spin
chain, say ∆θ, is solely due to the breather excitation.

5.5 FPUT recurrence in HF spin chain

Broadly speaking, a recurrence is when an initial state of the system is recovered either
completely or as a close approximation to it. It can even be a repeated process. The
phenomenon of recurrence is a fascinating concept in nonlinear dynamics which is now
attributed to the integrable nature of the system [50]. First indication of the recurrence phe-
nomena was in FPUT experiment (FPU in earlier literature [31]) which has been a paradox
till the discovery of ‘solitons’. Owing to the popularity of FPUT system — a discrete non-
linear lattice, recurrence behaviour in other systems are also termed as FPUT recurrence.
In FPUT experiment the energy initially given to the first normal mode gradually trans-
ferred to other higher modes showing a hint of equipartition. Nonetheless, the process get
reversed to reinforce the energy in the initial first mode — which is a recurrence. In the
NLSE framework, especially in deep water or nonlinear optics, a similar process occurs
wherein the energy in the carrier wave get shared with many of its side bands or spectral
components. This happens with an increasing rate, during the initial stage of the nonlinear
development of weakly modulated carrier wave. This is widely known as modulation in-
stability (MI) or Benjamin-Feir instability [73, 26]. Nonlinear evolution of the wave trains
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 5.5: Spin breather Ŝ1 (5.5) is shown in its time evolution. This is a spatially peri-
odic case corresponds to ψGAB (3.22), obtained by choosing λ0R = −κ0/

√
2 and κ2

0 > λ2
0I .

Specifically, κ0 = 1.0 and λ0R = −0.7071, m = 2, n = 5 . Evolution of the spin chain be-
gins from a uniform background, gradually develops localized excitations which are spaced
periodically along the lattice, and eventually vanishes to get back the same uniform initial
background. Uniform rotation (in time) present in the background Ŝh has been cancelled
out for simplicity. However the spin chain undergoes an additional global rotation ∆θ, due
to the breather excitation which is analogous to the phase shift arising in soliton – soliton
interaction. In this particular case an interaction of the breather with its own background
— a condensate (plane wave). For detailed animation, see the supplementary material:
recurrence_hf.avi .
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modeled by NLSE initially undergo modulation with energy spread over spectral compo-
nents. However in the later stage carrier wave gradually regain all the energy, giving rise to
the initial wave train. This modulation – demodulation process in the absence of dissipa-
tion is observed to be closely related with FPUT recurrence by Lake et al. [151], which is
an earlier connection established in this regard both numerically and experimentally under
certain circumstances. Continuous wave trains are exact solution of NLSE, which is the
well known cnoidal wave expressed in terms of Jacobi elliptic function [109]. This is in
fact a family of solutions. The one-soliton solution of secant hyperbolic shape — a limiting
case of wave train, belongs to this family. The other extreme case is a harmonic plane wave
which arises as a special case of the cnoidal wave [110]. Thus one can think of a wave train
as solitonic lattice, whereas the harmonic plane wave resembles a condensate.

Propagation of a soliton over a solitonic lattice (wave train) leads to FPUT recurrence
which can be explained on the basis of individual soliton-soliton interaction occurring in
the system. The propagating soliton undergo a shift in position and phase during an elastic
collision, but at the end of the story the lattice restore its initial state (upto a shift in position
and phase) [152, 153].

Propagation of a breather (a special kind of soliton) over a condensate (plane wave)
is described by the iconic solutions KMB, AB or PS where it is evident that the system
returns to its initial state (with the same amplitude) giving rise to the FPUT recurrence. The
condensate being a plane wave, does not have so called ‘position’, but it does have a phase.
Therefore, FPUT recurrence in the condensate accompanied with a definite phase shift.
This was proposed by Devine et al. [75] with a detailed study in the case of Akhmediev
breather (AB). In their study, during the occurrence of AB the condensate (plane wave eit)
undergoes a phase shift which ranges from ‘0’ to 2π, depending on the spatial periodicity
of the breather. In the limiting case, PS is marked by a phase shift of 2π. Recently, phase
evolution under Peregrine soliton has been experimentally observed in water wave and
optical fibers [154].

In what follows, the phase shift observed in the condensate will be presented along with
the additional rotation seen in the spin chain. Since there are two kinds of spatially periodic
breather, namely ψAB and ψGAB, a qualitative difference observed between their gauge
equivalent spin field will be pointed out. In the previous section we made a conjecture that
the spin chain explicitly shows the change experienced by it during a ‘breathing event’ via
the additional global rotation it picked up. This is evident from Fig. 5.5 (a) and (i). This
extra rotation — call it as phase shift in the spin field, ∆θ for convenience. This can be
calculated by considering any two spin vectors at (x0, t0) and (x0,−t0), where the constant
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t0 is relatively large to claim for ±t → ∞. Breather solution ψGAB, being a complex
function reveals a shift it has undergone during a breathing event, via its phase factor, say
ϕ = arg(ψGAB) . Let the phase shift be ∆ϕ, obtained from the difference in ϕ computed
at t0 and −t0. Keeping κ0 fixed (and fixed λ0R = −κ0/

√
2), both the phase shifts ∆θ and

∆ϕ are calculated as a function of λ0I which is shown in Fig. 5.6 (a). In the left limit, for
λ0I ∼ 0, the breather excitation over the condensate vanishes — hence no phase shift. On
the other hand, λ0I ∼ κ0 leads to the rogue event, indicated by 2π shift. In between these
two limits, both the quantities varies in a similar fashion. It is to be noted that for the spin
chain, phase shift of 0 or 2π does not make any difference.

0

π

2π

0 0.2 0.4 0.6 0.8 1

λ0I

∆ϕ
∆θ

(a) Phase shift in ψGAB

0

π

2π

0 0.2 0.4 0.6 0.8 1

λ0I

∆ϕ
∆θ

(b) Phase shift in ψAB

Figure 5.6: Phase shift ∆ϕ is the additional phase developed in the complex field ψ during
a breathing event. Additional global rotation picked up by the spin chain is denoted as ∆θ.
Phase shift versus λ0I is shown for fixed κ0(= 1). (a) Galilean transformed Akhmediev
breather ψGAB and its spin counter part get phase shifted during a breather excitation. (b)
Although Akhmediev breather ψAB shows a non zero phase shift, the corresponding spin
chain does not show any additional global rotation during this breathing event. In both
cases (a) and (b), λ0I ∼ κ0 leads to the rogue event, marked by 2π phase shift in the
complex field ψGAB and ψAB. Breather solution does not exist in the limit λ0I ∼ 0.

One may compare this result with that of Akhmediev breather ψAB (3.23), and its asso-
ciated spin breather (4.25) with variables defined in (4.28). This is shown in Fig. 5.6 (b).
Phase shift ∆ϕ in the plane wave background (condensate) ranges from ‘0’ to 2π. Here,
the plane wave is ψc = κ0 e

2iκ20t, with time dependent phase part. The phase is calculated at
two different instances ±t0 →∞ where the time dependence of the phase part is unneces-
sary in the concerned problem. Therefore it is omitted to emphasise the contribution arising
only from breather excitation [75]. It shows that, the additional global rotation ∆θ picked
up by the spin chain during the recurrence, is ‘0’ for any λ0I . It is quite obvious from
Fig. 4.3, that the spin background is recovered exactly as before after a breathing event.
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Although we discussed breather excitation in a finite spin chain (which is considered as a
rogue in Sec. 4.5) for the convenience of explaining the ‘belt trick’, an extended spin chain
does not alters the above observation.

There are instances in other areas of physics where an additional phase acquired by the
system under a cyclic process has geometrical connections [155, 156]. In this particular
context, the phase evolution experienced by the condensate can be viewed as a memory
being possessed by the system regarding the breathing event it has underwent. Phase shift
thus becomes the trace left after the recurrence. In the same footing, it is reasonable to
consider the additional global rotation experienced by the spin chain during a recurrence,
as the trace left in it. If so, spin field associated with Galilean transformed Akhmediev
breather ψGAB leaves a trace, whereas the spin field associated with Akhmediev breather
ψAB does not.

5.6 Conclusion

Spatially periodic spin configuration with individual spin vectors having constant rotation
about a common axis constitute a solution to the 1-d LLE. Breather excitation over this
dynamical spin background is studied by providing an explicit mathematical expression for
the spin breather. In the most general case, evolution of the spin configuration is found to
demonstrate the well known ‘belt trick’ wherein the number of rotation present in the spin
chain between its boundaries changes by ‘2’. In Chapter 4 the ‘belt trick’ behaviour was
also shown to exist in spin breather over the static spin background. Therefore a peculiar
geometrical feature of this kind is seen to be associated with breather solutions in general.

A spatially periodic spin breather is studied in detail which is indeed the gauge equiv-
alent of Galilean transformed Akhmediev breather. It is shown that the the spin chain
undergoes an additional global rotation during the breather excitation. Additional global
rotation experienced by this spin chain ranges from 0 to 2π, depending on the spatial pe-
riodicity of the breather. This additional rotation is closely related to the additional phase
gained by the plane wave background during the same breathing event. Phase evolution of
the plane wave solution in the context of Akhmediev breather is an established result em-
phasizing the ‘trace’ embedded in the system during an FPUT growth-decay cycle. Using
the same analogy we draw a conclusion that the additional global rotation seen in the spin
chain after an FPUT recurrence is the trace being left by the breathing event. At the same
time, we observe that the spin chain which is gauge equivalent to the Akhmediev breather,
does not experience any additional global rotation during the recurrence process.
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In conclusion, there are two kinds of spin breathers — gauge equivalent to AB and
gauge equivalent to Galilean transformed AB, which are qualitatively distinct by virtue of
the closeness of FPUT recurrence. In the former, recurrence is exact in such a way that
no measure can distinguish the initial and final state of the spin chain. The later, however
picked up an additional global rotation that clearly distinguish the system before and after
the FPUT recurrence.
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Chapter 6

Conclusion and future problems

This thesis work is an exploration of the geometrical features of NLSE breather solutions,
exploiting its close relationship with 1-d Heisenberg Ferromagnetic (HF) spin system and
moving space curves. In a manner, we have visualized one of the remarkable properties
of integrable systems — recurrence. A recurrence process can be exactly modelled by
spatially periodic breather solutions to the NLSE (Akhmediev breather). In this frame-
work a recurrence process receives certain unusual properties in contrast to a mere periodic
process. One is that the recurrence takes place only once. Moreover, as time goes to infin-
ity in both directions, the system asymptotically attains (nearly) identical states — a kind
of settled state free of any fluctuations. The ruffling occurs only for a short duration of
time. We have shown in this work, two kinds of spatially periodic breathers in the HF
spin chain: one associated with the Akhmediev breather, and the other associated with a
Galilean transformed Akhmediev breather. In the former, the recurrence is exact, in the
sense that the initial and final configuration are indistinguishable. In the later, the spin
chain has undergone an additional global rotation, which clearly distinguish the initial and
final states of the spin chain. Our result shows that a one-to-one correspondence between
HF model and the NLSE, seems missing in view of the recurrence phenomena.

During this investigation, we have encountered two intriguing topological features. One
is a periodic knot formation in the associated space curves. Knotted space curves associated
with breather solutions are a new feature so far not explored. Secondly, we observe a more
interesting topological scenario during a breather excitation, that the spin chain demon-
strates the belt trick. This is familiar trick using a belt or a ribbon, which easily explains
the equivalence of ‘two rotation’ and ‘no rotation’. In what follows is a brief discussion
regarding the relevance of the findings and some future problems that naturally arise based
on the results of this thesis.

1. Breather excitation in 1-d HF spin chain has been shown as a manifestation of the
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well known ‘belt trick’, which is often used to demonstrate the trivialityof 4π rotation in
R3. A finite spin chain initially having ‘2’ complete turns in its spin configuration between
its ends, as one moves along the lattice, continuously changes to a ‘0’ turn state through a
breather excitation, after which it eventually go back to its initial (‘2’ turn) configuration.
If effects of damping are incorporated suitably, breather excitation may leads to 2 → 0

transition. Further, as pointed out, the minimum energy levels for the two states are clearly
divided by a finite gap. The process of initiating such a breather excitation may have
significant role in magnon based computing [157], since a spin chain with two such topo-
logically distinguishable states provide a potential candidate for storing and manipulating
binary data. Hence it would be of much practical interest to study the possible mechanism
for breather excitation in 1-d HF spin chain. The primary quantity of interest is the total
twist in the chain, experimental measurement of which holds the key to such a proposal.
It is worth mentioning here that a local measurement of macro-magnetization is possible
through methods such as optical techniques, antenna-based inductive techniques, Brillouin
light scattering spectroscopy and spin pumping effect [157]. However, the interest in this
case is in a global quantity, namely the total twist. On the experimental side measure-
ment of such a quantity presents itself as a curious topic to be pursued, leading to greater
possibilities in magnonic memory and computing.

2. We have presented a new class of breather solution to the NLSE, where the associ-
ated space curve is knotted. What is narrated in the space curve is the true essence of the
solution which in fact cannot be revealed merely by looking at the complex soliton profile.
A natural question arises — how and where does one witness this in a physical system?
Although vortex filament motion is modelled using the equivalent LIA, as was pointed out,
it fails to be a good model when long range effects are non-negotiable. Since NLSE is
used to model a wide variety of physical systems, this special breather solution with its
hidden periodic knotting – unknotting, does leave open the possibility of a physical obser-
vation, even if indirectly. For instance, can be optical soliton in a Kerr medium (described
in NLSE) associated with a knotted breather be distinguished from one that is associated
with an un-knotted breather? Can the phase of a Bose-Einstein condensate hold any addi-
tional information that relates to the knotted breather? How does one distinguish between
the knotted and un-knotted breather state in a ferromagnetic spin chain? The multitude
of systems that the NLSE is associated with, leaves a wide possibility for experimental
realization of the knotted breather.

3. As a common characteristics of the breather excitation the final state of the system is
more or less identical to the initial state, thus by providing the notion of FPUT recurrence.
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However, under a space periodic breather excitation in the NLSE (Akhmediev Breather –
AB), there exist a measurable quantity called phase shift that distinguish initial and final
state of the complex field. Phase shift can be thought of as the ‘trace’ being left in the
system after a recurrence process. The same description is also valid in the case of Galilean
transformed AB. We have identified a similar quantity in spatially periodic spin breather
— an additional global rotation picked up by the spin chain after a recurrence process
which is analogous to the remnants of breather excitation. Spin breather corresponding
to AB and Galilean transformed AB behaves qualitatively different in this regard, as the
additional global rotation in the former is zero whereas in the later is non zero. Being
gauge equivalent, both the systems NLSE and HF spin chain, must have some correlation
in their dynamics which seems violated in the setting of this newly observed additional
global rotation. This issue has to be addressed either by suggesting a reason behind this
ambiguity or by identifying the proper counterpart for the phase shift in HF spin chain.

4. In order to obtain the knotted breather, we had started with a seed solution that
corresponds to a helix (if one were to look at the associated space curve), and then using
a Darboux transformation to obtain a breather mode. As was pointed out in section 3.4,
this seed solution (helix) is Galilean equivalent to a seed associated with a circle. The
well known Akhmediev breather is a spatially periodic case of the more general breather
obtained from such a seed solution (circle) through Darboux transformation. We have
shown that the spatially periodic case of the knotted breather is a Galilean equivalent to the
Akhmediev breather. Therefore as a special case, we observe that, a Galilean transforma-
tion and Darboux transformation acting on a seed solution associated with a circle, at two
different orders leads to the same breather solution. Although this is not explored in this
thesis in detail, it is but natural to analyse this question on the commutativity of the two
transformations in its generality.

5. Just as the classical continuous Heisenberg ferromagnet in one dimension is inte-
grable, the quantum version of the problem is integrable through Bethe ansatz, and is an
equally fundamental model in physics of quantum integrable systems. We noted that the
solution space of the spin chain is effectively divided into two topological sectors charac-
terized by the total twist. Further, we found that the minimum energy of the two sectors
are separated by a finite gap. It would be interesting to look for its generalization to the
quantum ferromagnet, and if a similar distinction can indeed be made in the state space
of the quantum spin chain. Of particular interest will the look for a parallel in the energy
lower bound of the two sectors, if indeed that is to be the case.

—–
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In the real world the dynamics of most of the systems are governed by nonlinear evolu-
tion equations. The study of nonlinear dynamics have two distinct regimes; chaos and the
integrability. Integrable models are quite rare in nature, and are often approximations of
rather complicated system dynamics. However ideal they seem integrable systems are of
special interest owing to their exact analytical solutions.

Geometry is omnipresent in nature. Abstract things are often demonstrated geomet-
rically in a simple and elegant manner. This thesis has studied some of the geometrical
features of the NLSE breather solutions. Some peculiar geometrical features such as, belt

trick and knots, show up unexpectedly during our studies, which give enough space for
further investigations. What is more interesting is that the systems under investigation are
simple mathematical models. They are ideal systems, that too in one dimension, they nev-
ertheless show that geometry can play a significant role even in low dimensional systems.

? ? ?
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Appendix A

NLS Helix: Darboux transformation and
breather solutions

We choose an informal name “NLS Helix” to label the broad class of solutions and ex-
pressions that are associated with seed solution, ψh = κ0e

i
√

2κ0x, for which the associated
space curve is a helix. In this chapter, we provide mathematical steps for the DT technique.

A.1 NLSE and the Lax pair

The nonlinear Schrödinger equation (NLSE)

iψt + ψxx + 2|ψ|2ψ = 0, (A.1)

arises as the compatibility condition for the linear system, also known as Lax pair

Ψx = UΨ, Ψt = VΨ, (A.2)

where the connections U and V are in general functions of x, t and spectral parameter λ.
For convenience one can treat them as functions of ψ and its derivatives, as given below:

U(ψ) =

(
0 ψ

−ψ 0

)
+ λ

(
−i 0

0 i

)
, (A.3)

V (ψ) =

(
i|ψ|2 i ψx

i ψx −i|ψ|2

)
+ λ

(
0 2ψ

−2ψ 0

)
+ λ2

(
−2i 0

0 2i

)
. (A.4)

113



A.2 Darboux transformation

Each solution to the NLSE (A.1) corresponds to a matrix solution to the Lax pair (A.2). We
employ Darboux transformation detailed in section 2.6.2, to obtain a new breather solution
— knotted breather, by starting from a seed solution

ψh = κ0e
i
√

2κ0x, (A.5)

for a real constant κ0.

A.2.1 Seed solution and related functions

Seed solution ψh corresponds to a matrix solution Ψh(x, t, λ) to the below Lax pair

Ψh,x = UhΨh,

Ψh,t = VhΨh,
(A.6)

where Uh = U(ψh), and Vh = V (ψh). We explicitly write the matrix solution Ψh in the
form,

Ψh(x, t, λ) =
1√
d

(
ϕ1 −ϕ2

ϕ2 ϕ1

)
, (A.7)

where,

ϕ1 =
(
a eiΩ/2 + b e−iΩ/2

)
e
i 1√

2
κ0x,

ϕ2 = −
(
b eiΩ/2 + a e−iΩ/2

)
e
−i 1√

2
κ0x,

Ω = 2 f (x−
√

2µt), f =
1√
2

√
ν2 + 2κ2

0,

µ = κ0 −
√

2λ, ν = κ0 +
√

2λ,

a = i(ν −
√

2f)−
√

2κ0, b = i(ν +
√

2f)−
√

2κ0, d = 16f 2.

(A.8)

We have assumed the form of ϕ1 and ϕ2 in (A.7), then substituted in (A.6) to obtain its
exact expression as given in (A.8).
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A.2.2 Calculation for G0

If φ[1] and φ[2] are two known vector valued eigenfunctions of the Lax pair (A.6) corre-
sponding to the parameters λ0 and λ0. Using the matrices

M0 = diag(λ0, λ0), H =
(
φ[1] φ[2]

)
, G0 = −HM0H

−1, (A.9)

the Darboux matrix G1(λ) can be found in the form

G1(λ) = λI +G0. (A.10)

We will first obtain suitable φ[1] and φ[2] from (A.7) by considering its column matrices,
and then calculate the Darboux matrix.

Let φ[1] and φ[2] be

φ[1] =
1√
d0

(
φ1

φ2

)
, φ[2] =

1√
d0

(
−φ2

φ1

)
, (A.11)

where,

φ1 =
(
a0 e

iΩ0/2 + b0 e
−iΩ0/2

)
e
i 1√

2
κ0x,

φ2 = −
(
b0 e

iΩ0/2 + a0 e
−iΩ0/2

)
e
−i 1√

2
κ0x,

Ω0 = 2 f0 (x−
√

2µ0t), f0 =
1√
2

√
ν2

0 + 2κ2
0,

µ0 = κ0 −
√

2λ0, ν0 = κ0 +
√

2λ0,

a0 = i(ν0 −
√

2f0)−
√

2κ0, b0 = i(ν0 +
√

2f0)−
√

2κ0, d0 = 16f 2
0 .

(A.12)

One can verify that φ[1] and φ[2] defined in (A.11) satisfy the Lax pair (A.6) corresponding
to the parameters λ0 and λ0, i.e., the connections Uh and Vh computed at λ = λ0 and λ = λ0

respectively. Then the matrices (A.9) may be written as

M0 =

(
λ0 0

0 λ0

)
, H =

1√
d0

(
φ1 −φ2

φ2 φ1

)
, G0 = −HM0H

−1. (A.13)
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A direct matrix multiplication gives G0 as,

G0 = − 1√
d0

(
φ1 −φ2

φ2 φ1

) (
λ0 0

0 λ0

) √
d0

|φ1|2 + |φ2|2

(
φ1 φ2

−φ2 φ1

)
. (A.14)

Further simplification leads to,

G0 =

(
−λ0R 0

0 −λ0R

)
+

iλ0I

|φ1|2 + |φ2|2

(
−(|φ1|2 − |φ2|2) −2φ1φ2

−2φ1φ2 (|φ1|2 − |φ2|2)

)
. (A.15)

where the matrix elements can be found from functions defined in (A.12) as follows:

|φ1|2 + |φ2|2 = 2(a0b0 + b0a0) cos Ω0R + 2(a0a0 + b0b0) cosh Ω0I ,

|φ1|2 − |φ2|2 = −2i(a0b0 − b0a0) sin Ω0R − 2(a0a0 − b0b0) sinh Ω0I ,

(−2φ1φ2)/(ei
√

2κ0x) = 2(a0a0)eiΩ0R + 2(b0b0)e−iΩ0R + 2(a0b0)eΩ0I + 2(b0a0)e−Ω0I .
(A.16)

Define constants c1, c2, c3 and c4 as shown below

c1 = 2(a0a0 + b0b0),

c2 = 2(a0b0 + b0a0),

c3 = −2(a0a0 − b0b0),

c4 = −2i(a0b0 − b0a0).

(A.17)

Substitute these constants in (A.16). Then G0 may be written as

G0 =

(
−λ0R 0

0 −λ0R

)
+ i

λ0I

χ

(
−ξ ei

√
2κ0x(ζ − i η)

e−i
√

2κ0x(ζ + i η) ξ

)
, (A.18)

where,
ζ = c1 cos(Ω0R) + c2 cosh(Ω0I),

η = c3 sin(Ω0R)− c4 sinh(Ω0I),

ξ = c4 sin(Ω0R) + c3 sinh(Ω0I),

χ = c2 cos(Ω0R) + c1 cosh(Ω0I).

(A.19)
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A straightforward calculation of (A.17) gives,

c1 = 2
(
4κ2

0 + 2 |ν0|2 + 4
√

2κ0 ν0I + 4 |f0|2
)
,

c2 = 2
(
4κ2

0 + 2 |ν0|2 + 4
√

2κ0 ν0I − 4 |f0|2
)
,

c3 = 2
(
8κ0 f0I + 4

√
2 (ν0R f0R + ν0I f0I)

)
,

c4 = −2
(
8κ0 f0R + 4

√
2 (ν0I f0R − ν0R f0I)

)
.

(A.20)

As a remark — G0 (A.18) is independent of λ, and G0G
†
0 = |λ0|2I.

A.2.3 1-soliton solution

Starting with a known solution ψh, a new solution ψ1 can be obtained by,

ψ1 = ψh − 2i(G0)12, (A.21)

where (G0)12 is the second element of the first row in G0 (A.18). Therefore the required
solution, 1-breather is given by,

ψ1 = ei
√

2κ0x
(
κ0 − 2λ0I

(ζ − i η)

χ

)
. (A.22)

Note that ψh,−ψh, ψ1 and −ψ1 are all equally satisfy NLSE (A.1). Hence suitable sign
changes are allowed in (A.22).

A.2.4 Darboux matrix G1(λ)

The Darboux matrix G1(λ) can be found in the form G1(λ) = λI + G0. We write it
explicitly as,

G1 =

(
λ− λ0R 0

0 λ− λ0R

)
+ i

λ0I

χ

(
−ξ ei

√
2κ0x(ζ − i η)

e−i
√

2κ0x(ζ + i η) ξ

)
. (A.23)

Darboux transformation gives a new Ψ1 by,

Ψ1(x, t, λ, λ0) =
1√
d1

G1(x, t, λ, λ0) Ψh(x, t, λ), (A.24)
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where d1 = |G1| = (λ2 + |λ0|2 − 2λλ0R). Matrix solution Ψ1 satisfies the Lax pair

Ψ1,x = U1Ψ1,

Ψ1,t = V1Ψ1,
(A.25)

where U1 = U(ψ1), and V1 = V (ψ1). One may compare (A.25) with (A.6) to see how
Darboux transformation transform ψ and Ψ systematically.

A.3 Akhmediev type breather

Akhmediev breather (AB) [11] is a spatially periodic breather. We note that, the new
breather solution ψ1 (A.22) shows spatial periodicity under suitable conditions. This sec-
tion elaborate the derivation for this special case — Akhmediev type breather.

In this case, the largest modulation occurs at t = 0; that too only once. From the
functional form of ζ , η and χ given in (A.19), one can infer that the largest modulation
arises from hyperbolic function for which the argument is Ω0I . On the other hand, peri-
odicity comes from Ω0R via trigonometric functions. We will discuss a special case where
Ω0I ≡ Ω0I(t), a function of t alone, so that the breather peaks align at t = 0 line in the x−t
plane. But in this case it is not possible to impose any restriction in Ω0R. Nevertheless, a
spatially periodic solution qualitatively similar to Akhmediev breather can be achieved.

Recall the functions defined in (A.12). Consider,

2 f 2
0 = ν2

0 + 2κ2
0, (A.26)

where, ν0 = ν0R + i ν0I = (κ0 +
√

2 λ0R) + i
√

2 λ0I . Let ν0R = 0, (i.e., λ0R = − κ0√
2
).

Then (A.26) becomes,
f 2

0 = κ2 − λ2
0I . (A.27)

Note that the right hand side of Eq. (A.27) is real, whereas f0 is complex in general. Thus
we have two cases as shown below:

• case 1: κ2
0 < λ2

0I

f 2
0I = λ2

0I − κ2
0, f0R = 0. (A.28)

• case 2: κ2
0 > λ2

0I

f 2
0R = κ2

0 − λ2
0I , f0I = 0. (A.29)
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We write Ω0R and Ω0I explicitly,

Ω0R = 2 f0R x+ 2
√

2 t (f0I µ0I − f0R µ0R),

Ω0I = 2 f0I x− 2
√

2 t (f0I µ0R + f0R µ0I).
(A.30)

As pointed out earlier, we are interested in a special case with Ω0I ≡ Ω0I(t). Therefore we
choose case 2, where f0I = 0. Thus there is no x dependence in Ω0I and our condition is
met. We will not discuss case 1 here, since it does not give anything special. In brief, the
condition for Akhmediev type breather is,

λ0R = − κ0√
2
, and κ2

0 > λ2
0I . (A.31)

Equation (A.29), κ2
0 = λ2

0I + f 2
0R can be expressed conveniently by introducing a real

parameter φ such that,

λ0I = κ0 cosφ, and f0R = κ0 sinφ. (A.32)

It follows that µ0R = 2κ0, µ0I = −
√

2λ0I along with f0I = 0. Equation (A.30) get
simplified as follows:

Ω0R = q(x− 2
√

2κ0t),

Ω0I = rt,
(A.33)

where q = 2κ0 sinφ and r = 2κ2
0 sin(2φ). Constants ci given in (A.20) become,

c1 = 16(κ0 + λ0I)κ0, c2 = c1 cosφ, c3 = 0, c4 = −c1 sinφ. (A.34)

Functions ζ, η, χ in (A.19) now get simplified to

ζ = c1

(
cos(q(x− 2

√
2κ0t)) + cosφ cosh(rt)

)
,

η = c1 sinφ sinh(rt),

χ = c1

(
cosφ cos(q(x− 2

√
2κ0t)) + cosh(rt)

)
.

(A.35)

Finally the breather solution ψ1 (A.22) reduces to,

ψGAB = −κ0 e
i
√

2κ0(x−x0) cosh(rt− 2iφ)− cosφ cos(q(x− vt))
cosh(rt)− cosφ cos(q(x− vt))

, (A.36)

where, q = 2κ0 sin(φ), r = 2κ2
0 sin(2φ), v = 2

√
2κ0, φ = cos−1(λ0I/κ0) and x0 = π/q.
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It is clear that, the breather solution ψGAB is localized in t and periodic in x. Comparing
(A.36) with Akhmediev breather ψAB (B.39), one can infer that, a Galilean transformation
of ψAB leads to ψGAB. Hence the name ψGAB – Galilean transformed Akhmediev Breather.
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Appendix B

NLS Circle: Darboux transformation and
breather solutions

We choose an informal name “NLS Circle” to label the broad class of solutions and expres-
sions that are associated with seed solution, ψc = κ0 e

2iκ20t. Space curve associated with
this seed is a circle. In this chapter, we provide mathematical steps for the DT technique.
We will also provide the derivation of the well known breather solutions AB, KMB, PS and
their space curve description.

B.1 NLSE and the Lax pair

The nonlinear Schrödinger equation (NLSE)

iψt + ψxx + 2|ψ|2ψ = 0, (B.1)

arises as the compatibility condition for the linear system, also known as Lax pair

Ψx = UΨ, Ψt = VΨ, (B.2)

where the connections U and V are in general functions of x, t and spectral parameter λ.
For convenience one can treat them as functions of ψ and its derivatives, as given below:

U(ψ) =

(
0 ψ

−ψ 0

)
+ λ

(
−i 0

0 i

)
, (B.3)

V (ψ) =

(
i|ψ|2 i ψx

i ψx −i|ψ|2

)
+ λ

(
0 2ψ

−2ψ 0

)
+ λ2

(
−2i 0

0 2i

)
. (B.4)
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B.2 Darboux transformation

Each solution to the NLSE (B.1) corresponds to a matrix solution to the Lax pair (B.2). We
employ Darboux transformation detailed in section 2.6.2, to obtain a new breather solution,
by starting from a seed solution

ψc = κ0 e
2iκ20t, (B.5)

for a real constant κ0.

B.2.1 Seed solution and related functions

Seed solution ψc corresponds to a matrix solution Ψc(x, t, λ) to the below Lax pair

Ψc,x = UcΨc,

Ψc,t = VcΨc,
(B.6)

where Uc = U(ψc), and Vc = V (ψc). We explicitly write the matrix solution Ψc in the
form,

Ψc(x, t, λ) =
1√
d

(
ϕ1 −ϕ2

ϕ2 ϕ1

)
, (B.7)

where,

ϕ1 =
(
e−iω/2 + i

(λ− p)
κ0

eiω/2
)
eiκ

2
0t,

ϕ2 =
(
i

(λ− p)
κ0

e−iω/2 + eiω/2
)
e−iκ

2
0t,

ω = 2 p(x+ 2λt), p = (κ2
0 + λ2)1/2, d = 4(κ2

0 + λ2 − λp)/κ2
0.

(B.8)

We have assumed the form of ϕ1 and ϕ2 in (B.7), similar to the form given by Yan-Chow
Ma [103, Sec. II], then substituted in (B.6) to obtain its exact expression as given in (B.8).

B.2.2 Calculation for G0

If φ[1] and φ[2] are two known vector valued eigenfunctions of the Lax pair (B.6) corre-
sponding to the parameters λ0 and λ0. Using the matrices

M0 = diag(λ0, λ0), H =
(
φ[1] φ[2]

)
, G0 = −HM0H

−1, (B.9)
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the Darboux matrix P1(λ) can be found in the form

P1(λ) = λI +G0. (B.10)

We will first obtain suitable φ[1] and φ[2] from (B.7) by considering its column matrices,
and then calculate the Darboux matrix.

Let φ[1] and φ[2] be

φ[1] =
1√
d0

(
φ1

φ2

)
, φ[2] =

1√
d0

(
−φ2

φ1

)
, (B.11)

where,

φ1 =
(
e−iω0/2 +

iµ0

κ0

eiω0/2
)
eiκ

2
0t,

φ2 =
(iµ0

κ0

e−iω0/2 + eiω0/2
)
e−iκ

2
0t,

ω0 = 2 p0(x+ 2λ0t), µ0 = (λ0 − p0),

p0 = (κ2
0 + λ2

0)1/2, d0 = 4(κ2
0 + λ2

0 − λ0p0)/κ2
0.

(B.12)

One can verify that φ[1] and φ[2] defined in (B.11) satisfy the Lax pair (B.6) corresponding
to the parameters λ0 and λ0, i.e., the connections Uc and Vc computed at λ = λ0 and λ = λ0

respectively. Then the matrices (B.9) may be written as

M0 =

(
λ0 0

0 λ0

)
, H =

1√
d0

(
φ1 −φ2

φ2 φ1

)
, G0 = −HM0H

−1. (B.13)

A direct matrix multiplication gives G0 as,

G0 = − 1√
d0

(
φ1 −φ2

φ2 φ1

) (
λ0 0

0 λ0

) √
d0

|φ1|2 + |φ2|2

(
φ1 φ2

−φ2 φ1

)
. (B.14)

Further simplification leads to

G0 =

(
−λ0R 0

0 −λ0R

)
+

iλ0I

|φ1|2 + |φ2|2

(
−(|φ1|2 − |φ2|2) −2φ1φ2

−2φ1φ2 (|φ1|2 − |φ2|2)

)
. (B.15)
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where the matrix elements can be found from functions defined in (B.12) as follows:

|φ1|2 + |φ2|2 =
(
2κ0(p0I − λ0I) cosω0R + (κ2

0 + |µ0|2) coshω0I

)
/κ2

0,

|φ1|2 − |φ2|2 =
(
2κ0(p0R − λ0R) sinω0R + (κ2

0 − |µ0|2) sinhω0I

)
/κ2

0,

−2φ1φ2 = −e2iκ20t
(
|µ0|2eiω0R + κ2

0e
−iω0R + iµ

κ0

2
e−ω0I − iµκ0

2
eω0I

)
/κ2

0.

(B.16)

Define constants b1, b2, b3 and b4 as shown below

b1 = κ2
0 + |µ0|2,

b2 = 2κ0(p0I − λ0I),

b3 = κ2
0 − |µ0|2,

b4 = 2κ0(p0R − λ0R).

(B.17)

Substitute these constants in (B.16). Then G0 may be written as

G0 =

(
−λ0R 0

0 −λ0R

)
+ i

λ0I

∆

(
−γ −e2iκ20t(α− i β)

−e−2iκ20t(α + i β) γ

)
, (B.18)

where,
α = b1 cosω0R + b2 coshω0I ,

β = b3 sinω0R − b4 sinhω0I ,

γ = b4 sinω0R + b3 sinhω0I ,

∆ = b2 cosω0R + b1 coshω0I

(B.19)

A straightforward calculation of (B.17) gives,

b1 = 2(λ2
0I + p2

0R − λ0Rp0R − λ0Ip0I),

b2 = 2κ0(p0I − λ0I),

b3 = −2(λ2
0R + p2

0I − λ0Rp0R − λ0Ip0I),

b4 = 2κ0(p0R − λ0R).

(B.20)

As a remark — G0 (B.18) is independent of λ, and G0G
†
0 = |λ0|2I.
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B.2.3 1-soliton solution

Starting with a known solution ψc, a new solution ψcb can be obtained by,

ψcb = ψc − 2i(G0)12, (B.21)

where (G0)12 is the second element of the first row in G0 (B.18). The required solution,
1-breather is given by,

ψcb = e2iκ20t
(
κ0 + 2λ0I

(α− i β)

∆

)
, (B.22)

where λ0 is a complex parameter, and the functions α, β and ∆ are defined in (B.19). Note
that ψc,−ψc, ψcb and −ψcb are all equally satisfy the NLSE, hence suitable sign changes
are allowed in (B.22).

B.2.4 Darboux matrix P1(λ)

The Darboux matrix P1(λ) can be found in the form P1(λ) = λI + G0. We write it
explicitly as,

P1 =

(
λ− λ0R 0

0 λ− λ0R

)
+ i

λ0I

∆

(
−γ −e2iκ20t(α− i β)

−e−2iκ20t(α + i β) γ

)
, (B.23)

where λ0 is a complex parameter, and the functions α, β, γ and ∆ are defined in (B.19).
Darboux transformation gives a new Ψcb by,

Ψcb(x, t, λ, λ0) =
1√
d1

P1(x, t, λ, λ0) Ψc(x, t, λ), (B.24)

where d1 = |P1| = (λ2 + |λ0|2 − 2λλ0R). Matrix solution Ψcb satisfies the Lax pair

Ψcb,x = UcbΨcb,

Ψcb,t = VcbΨcb,
(B.25)

where Ucb = U(ψcb), and Vcb = V (ψcb). One may compare (B.25) with (B.6) to see how
Darboux transformation transform ψ and Ψ systematically.
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B.3 Fundamental solutions in the limit λ→ 0

We have given the fundamental solutions Ψc (B.7) and Ψcb (B.24) in the previous sections.
In order to calculate the spin configuration, the above matrices in the limit λ → 0 is re-
quired. Matrix Ψc is written in terms of two complex functions ϕ1 and ϕ2. We will write
these complex functions in the required limit.

Setting λ = 0, it follows that,

d = 4, p = κ0, ω = 2κ0x. (B.26)

Substituting this in (B.8), ϕ1 can be simplified as follows:

ϕ1 = (e−iκ0x − ieiκ0x)eiκ20t

= (e−iκ0x + ei(κ0x−π/2))eiκ
2
0t (−i = e−iπ/2)

= (e−i(κ0x−π/4) + ei(κ0x−π/4))eiκ
2
0te−iπ/4

= 2 cos(κ0x− π/4) ei(κ
2
0t−π/4).

(B.27)

Similarly ϕ2 can be simplified as follows:

ϕ2 = (−ie−iκ0x + eiκ0x)e−iκ
2
0t

= (−e−i(κ0x−π/2) + eiκ0x)e−iκ
2
0t (i = eiπ/2)

= (−e−i(κ0x−π/4) + ei(κ0x−π/4))e−iκ
2
0teiπ/4

= 2i sin(κ0x− π/4) e−i(κ
2
0t−π/4).

(B.28)

Matrix Ψcb (B.24) is expressed as a product of P1 and Ψc. Since Ψc is already given in
the required limit, here we will deal with P1 alone. In Chapter 4, our discussion is mainly
based on a special case with λ0R = 0. So we apply both the limits together, i.e.,

λ0R = 0, and λ = 0. (B.29)

It follows that,
d1 = |P1| = (λ2 + |λ0|2 − 2λλ0R) = λ2

0I , (B.30)

and
1√
d1

P1 =
1

∆

(
−iγ −e2iκ20t(β + iα)

e−2iκ20t(β − iα) iγ

)
. (B.31)
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B.4 Akhmediev Breather (AB)

Recall the general expression for ψcb(x, t) (B.22) and necessary functions and constants
defined in (B.19) and (B.20) respectively. It is to be noted that the functions α, β, γ and ∆

are depending on x and t through ω0. Hence, we write its real and imaginary parts explicitly
as,

ω0R = 2p0R x+ 4t(p0R λ0R − p0I λ0I),

ω0I = 2p0I x+ 4t(p0R λ0I + p0I λ0R).
(B.32)

The condition for obtaining Akhmediev breather is,

λ0R = 0; and κ2
0 > λ2

0I , (B.33)

which readily give p0I = 0 along with a relation, λ2
0I + p2

0R = κ2
0. Now introduce φ such

that,
λ0I = κ0 cosφ, p0R = κ0 sinφ. (B.34)

Constants b1, b2, b3 and b4 in (B.20) reduces to

b1 = 2κ2
0, b2 = −2κ2

0 cosφ, b3 = 0, b4 = 2κ2
0 sinφ. (B.35)

Simplifying (B.32) by introducing q and r as follows:

ω0R = 2κ0 sin(φ)x = qx,

ω0I = 4κ2
0t sinφ cosφ = 2κ2

0 sin(2φ) t = rt,
(B.36)

where q and r are coefficients of x and t respectively. Functions α, β, γ, and ∆ (B.19) get
reduced to,

α = 2κ2
0

(
cos(qx)− cosφ cosh(rt)

)
,

β = −2κ2
0 sinφ sinh(rt),

γ = 2κ2
0 sinφ cos(qx),

∆ = −2κ2
0

(
cosφ cos(qx)− cosh(rt)

)
.

(B.37)

Making use of the relation

cosh(rt− 2iφ) = cosh(rt) cos(2φ)− i sinh(rt) sin(2φ), (B.38)
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equation (B.22) can be simplified to get the well known Akhmediev Breather (AB),

ψAB = −κ0e
2iκ20t

cosh(rt− 2iφ)− cosφ cos(qx)

cosh(rt)− cosφ cos(qx)
, (B.39)

where, q = 2κ0 sin(φ), r = 2κ2
0 sin(2φ) and φ = cos−1(λ0I/κ0). It is clear from the

expression that the above breather is localized in t but periodic in x .

B.5 Peregrine Soliton (PS)

Peregrine soliton arises as a special case ofψAB (B.39) in the limit φ→ 0. Taylor expansion
of (B.39) followed by a straightforward simplification, leads to

ψPS = −κ0e
2iκ20t

(
1− 4(1 + 4iκ2

0t)

1 + 4κ2
0x

2 + 16κ4
0t

2

)
, (B.40)

as discussed in Ref. [11, Sec. 3] (wherein authors set κ0 = 1 for simplicity).

B.6 Kuznetsov-Ma Breather (KMB)

The condition for KMB is
λ0R = 0; and κ2

0 < λ2
0I , (B.41)

which give p0R = 0 along with a relation, λ2
0I − p2

0I = κ2
0. Here we introduce φ (note the

difference from (B.34)) such that,

λ0I = κ0 coshφ, and p0I = κ0 sinhφ. (B.42)

Constants b1, b2, b3 and b4 in (B.20) get reduced to

b1 = 2κ2
0 coshφ(coshφ− sinhφ),

b2 = −2κ2
0(coshφ− sinhφ),

b3 = 2κ2
0 sinhφ(coshφ− sinhφ),

b4 = 0.

(B.43)
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Simplifying (B.32) as,

ω0R = −4κ2
0 sinhφ coshφ t = −2κ2

0 sinh(2φ) t = −rt,

ω0I = 2κ0 sinhφ x = qx,
(B.44)

where q and r are coefficients of x and t respectively. Functions α, β, γ,and ∆ (B.19) get
reduced to,

α = 2κ2
0(coshφ− sinhφ)

(
coshφ cos(rt)− cosh(qx)

)
,

β = −2κ2
0(coshφ− sinhφ) sinhφ sin(rt),

γ = 2κ2
0(coshφ− sinhφ) sinhφ sinh(qx),

∆ = 2κ2
0(coshφ− sinhφ)

(
coshφ cosh(qx)− cos(rt)

)
.

(B.45)

Making use of the relation

cos(rt− 2iφ) = cos(rt) cosh(2ϕ) + i sin(rt) sinh(2ϕ), (B.46)

equation (B.22) can be simplified to get the well known Kuznetsov-Ma Breather (KMB),

ψKMB = −κ0e
2iκ20t

cos(rt− 2iφ)− coshφ cosh(qx)

cos(rt)− coshφ cosh(qx)
, (B.47)

where, q = 2κ0 sinh(φ), r = 2κ2
0 sinh(2φ) and φ = cosh−1(λ0I/κ0). Interested readers

may see Ref. [11, Sec. 3], and further reduction to Peregrine soliton in the limit φ→ 0.

B.7 Space curve associated with NLSE breather

Space curves associated with the above discussed well known breather solutions were stud-
ied by Cieśliński et al. [15] in 1986. Nevertheless we would like to write down those results
here the way we obtained them, in line with with the other related expressions in this thesis.
This is to get a better comparison and for the completeness of the topic.

Each solution ψ to the NLSE can be mapped to a moving space curve R which satisfies
the LIA equation (2.22), Rt = Rx × Rxx, as described in Sec. 2.4. Space curve can
be constructed using the expression, R = limλ→0 Ψ−1Ψλ, where Ψ is the fundamental
solution to the Lax pair (B.2), and the subscript λ denotes differentiation with respect to λ.
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The seed solution ψc = κ0 e
2iκ20t thus corresponds to a space curve

Rc = lim
λ→0

Ψc
−1Ψc,λ, (B.48)

where Ψc (B.7) is the matrix solution to the Lax pair (B.6). The space curve may be written
as

Rc(x, t) =
1

2κ0

[
4κ2

0t î + sin(2κ0x) ĵ− cos(2κ0x) k̂
]
, (B.49)

which is a circle of radius 1
2κ0

moving with a constant velocity 2κ0 along the î direction.
This models the smoke-ring motion [15]. The 1-soliton excitation of this circular vortex,
namely Rcb, the associated space curve of the breather solution ψc (B.22), can be found by

Rcb = lim
λ→0

Ψcb
−1Ψcb,λ, (B.50)

where Ψcb (B.24) is the matrix solution to the Lax pair (B.25). The space curve may be
explicitly written as

Rcb = Rc+
λ0I

|λ0|2∆

{
β î+

[
α sin(2κ0x)−γ cos(2κ0x)

]̂
j+
[
−α cos(2κ0x)−γ sin(2κ0x)

]
k̂
}
.

(B.51)
Functions α, β, γ and ∆ are defined in (B.19). Detailed plots of Rcb (B.51) has been given
in Figures 3.1, 3.2 and 3.3.

Expression given by Cieśliński et al. [15] can be obtained by the following substitution:
d = λ0I/|λ0|2, n1 = −α/∆, n2 = −γ/∆, n3 = β/∆ and a coordinate rotation about y
axis through an angle −π/2, i.e., {̂i, ĵ, k̂} ⇒ {−k̂, ĵ, î}.
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